Details
Original language | English |
---|---|
Article number | 2742 |
Journal | International Journal of Molecular Sciences |
Volume | 19 |
Issue number | 9 |
Publication status | Published - 13 Sept 2018 |
Abstract
Gap junction channels and hemichannels formed by concatenated connexins were analyzed. Monomeric (hCx26, hCx46), homodimeric (hCx46-hCx46, hCx26-hCx26), and heterodimeric (hCx26-hCx46, hCx46-hCx26) constructs, coupled to GFP, were expressed in HeLa cells. Confocal microscopy showed that the tandems formed gap junction plaques with a reduced plaque area compared to monomeric hCx26 or hCx46. Dye transfer experiments showed that concatenation allows metabolic transfer. Expressed in Xenopus oocytes, the inside-out patch-clamp configuration showed single channels with a conductance of about 46 pS and 39 pS for hemichannels composed of hCx46 and hCx26 monomers, respectively, when chloride was replaced by gluconate on both membrane sides. The conductance was reduced for hCx46-hCx46 and hCx26-hCx26 homodimers, probably due to the concatenation. Heteromerized hemichannels, depending on the connexin-order, were characterized by substates at 26 pS and 16 pS for hCx46-hCx26 and 31 pS and 20 pS for hCx26-hCx46. Because of the linker between the connexins, the properties of the formed hemichannels and gap junction channels (e.g., single channel conductance) may not represent the properties of hetero-oligomerized channels. However, should the removal of the linker be successful, this method could be used to analyze the electrical and metabolic selectivity of such channels and the physiological consequences for a tissue.
Keywords
- Channel stoichiometry, Concatenated connexins, Dual whole-cell patch-clamp, Dye transfer, Gap junction, Heteromeric connexons, Human connexin26, Human connexin46, Inside-out patch-clamp configuration, Oligomerization
ASJC Scopus subject areas
- Chemical Engineering(all)
- Catalysis
- Biochemistry, Genetics and Molecular Biology(all)
- Molecular Biology
- Chemistry(all)
- Spectroscopy
- Computer Science(all)
- Computer Science Applications
- Chemistry(all)
- Physical and Theoretical Chemistry
- Chemistry(all)
- Organic Chemistry
- Chemistry(all)
- Inorganic Chemistry
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: International Journal of Molecular Sciences, Vol. 19, No. 9, 2742, 13.09.2018.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Concatenation of Human Connexin26 (hCx26) and Human Connexin46 (hCx46) for the Analysis of Heteromeric Gap Junction Hemichannels and Heterotypic Gap Junction Channels
AU - Schadzek, Patrik
AU - Hermes, Doris
AU - Stahl, Yannick
AU - Dilger, Nadine
AU - Ngezahayo, Anaclet
N1 - Funding Information: This research was partly funded by TransRegio TR37. The publication of this article was funded by the Open Access Fund of the Leibniz Universität Hannover. Acknowledgments: Nadine Dilger was partly supported by the DFG project Elektrodenoptimierung für Neuroprothesen NG 4/10-1. We thank Viviana Berthoud for the hCx46 clone.
PY - 2018/9/13
Y1 - 2018/9/13
N2 - Gap junction channels and hemichannels formed by concatenated connexins were analyzed. Monomeric (hCx26, hCx46), homodimeric (hCx46-hCx46, hCx26-hCx26), and heterodimeric (hCx26-hCx46, hCx46-hCx26) constructs, coupled to GFP, were expressed in HeLa cells. Confocal microscopy showed that the tandems formed gap junction plaques with a reduced plaque area compared to monomeric hCx26 or hCx46. Dye transfer experiments showed that concatenation allows metabolic transfer. Expressed in Xenopus oocytes, the inside-out patch-clamp configuration showed single channels with a conductance of about 46 pS and 39 pS for hemichannels composed of hCx46 and hCx26 monomers, respectively, when chloride was replaced by gluconate on both membrane sides. The conductance was reduced for hCx46-hCx46 and hCx26-hCx26 homodimers, probably due to the concatenation. Heteromerized hemichannels, depending on the connexin-order, were characterized by substates at 26 pS and 16 pS for hCx46-hCx26 and 31 pS and 20 pS for hCx26-hCx46. Because of the linker between the connexins, the properties of the formed hemichannels and gap junction channels (e.g., single channel conductance) may not represent the properties of hetero-oligomerized channels. However, should the removal of the linker be successful, this method could be used to analyze the electrical and metabolic selectivity of such channels and the physiological consequences for a tissue.
AB - Gap junction channels and hemichannels formed by concatenated connexins were analyzed. Monomeric (hCx26, hCx46), homodimeric (hCx46-hCx46, hCx26-hCx26), and heterodimeric (hCx26-hCx46, hCx46-hCx26) constructs, coupled to GFP, were expressed in HeLa cells. Confocal microscopy showed that the tandems formed gap junction plaques with a reduced plaque area compared to monomeric hCx26 or hCx46. Dye transfer experiments showed that concatenation allows metabolic transfer. Expressed in Xenopus oocytes, the inside-out patch-clamp configuration showed single channels with a conductance of about 46 pS and 39 pS for hemichannels composed of hCx46 and hCx26 monomers, respectively, when chloride was replaced by gluconate on both membrane sides. The conductance was reduced for hCx46-hCx46 and hCx26-hCx26 homodimers, probably due to the concatenation. Heteromerized hemichannels, depending on the connexin-order, were characterized by substates at 26 pS and 16 pS for hCx46-hCx26 and 31 pS and 20 pS for hCx26-hCx46. Because of the linker between the connexins, the properties of the formed hemichannels and gap junction channels (e.g., single channel conductance) may not represent the properties of hetero-oligomerized channels. However, should the removal of the linker be successful, this method could be used to analyze the electrical and metabolic selectivity of such channels and the physiological consequences for a tissue.
KW - Channel stoichiometry
KW - Concatenated connexins
KW - Dual whole-cell patch-clamp
KW - Dye transfer
KW - Gap junction
KW - Heteromeric connexons
KW - Human connexin26
KW - Human connexin46
KW - Inside-out patch-clamp configuration
KW - Oligomerization
UR - http://www.scopus.com/inward/record.url?scp=85053463122&partnerID=8YFLogxK
U2 - 10.3390/ijms19092742
DO - 10.3390/ijms19092742
M3 - Article
C2 - 30217016
AN - SCOPUS:85053463122
VL - 19
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
SN - 1661-6596
IS - 9
M1 - 2742
ER -