Details
Original language | English |
---|---|
Pages (from-to) | 1010- 1020 |
Number of pages | 11 |
Journal | Medicine and Science in Sports and Exercise |
Volume | 53 |
Issue number | 5 |
Publication status | Published - May 2021 |
Externally published | Yes |
Abstract
PURPOSE: The increased physiological demand of pregnancy results in the profound adaptation of the maternal cardiovascular system, reflected by greater resting cardiac output and left ventricular (LV) deformation. Whether the increased resting demand alters acute cardiac responses to exercise in healthy pregnant women is not well understood. METHODS: Healthy nonpregnant (n = 18), pregnant (n = 14, 22-26 wk gestation), and postpartum women (n = 13, 12-16 wk postdelivery) underwent assessments of cardiac function and LV mechanics at rest, during a sustained isometric forearm contraction (30% maximum), and during low-intensity (LOW) and moderate-intensity (MOD) dynamic cycling exercise (25% and 50% peak power output). Significant differences (α = 0.05) were determined using ANCOVA and general linear model (resting value included as covariate). RESULTS: When accounting for higher resting cardiac output in pregnant women, pregnant women had greater cardiac output during isometric contraction (2.0 ± 0.3 L·min-1·m-1.83; nonpregnant, 1.3 ± 0.2 L·min-1·m-1.83; postpartum, 1.5 ± 0.5 L·min-1·m-1.83; P = 0.02) but similar values during dynamic cycling exercise (pregnant, LOW = 2.8 ± 0.4 L·min-1·m-1.83, MOD = 3.4 ± 0.7 L·min-1·m-1.83; nonpregnant, LOW = 2.4 ± 0.3 L·min-1·m-1.83, MOD = 3.0 ± 0.3 L·min-1·m-1.83; postpartum, LOW = 2.3 ± 0.4 L·min-1·m-1.83, MOD = 3.0 ± 0.5 L·min-1·m-1.83; P = 0.96). Basal circumferential strain was higher in pregnant women at rest, during the sustained isometric forearm contraction (-23.5% ± 1.2%; nonpregnant, -14.6% ± 1.4%; P = 0.001), and during dynamic cycling exercise (LOW = -27.0% ± 4.9%, MOD = -27.4% ± 4.6%; nonpregnant, LOW = -15.8% ± 4.5%, MOD = -15.2% ± 6.7%; P = 0.012); however, other parameters of LV mechanics were not different between groups. CONCLUSION: The results support that the maternal heart can appropriately respond to additional cardiac demand and altered loading experienced during acute isometric and dynamic exercise, although subtle differences in responses to these challenges were observed. In addition, the LV mechanics that underpin global cardiac function are greater in pregnant women during exercise, leading to the speculation that the hormonal milieu of pregnancy influences regional deformation.
Keywords
- AFTERLOAD, CYCLING, HEMODYNAMICS, PRENATAL
ASJC Scopus subject areas
- Health Professions(all)
- Physical Therapy, Sports Therapy and Rehabilitation
- Medicine(all)
- Orthopedics and Sports Medicine
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Medicine and Science in Sports and Exercise, Vol. 53, No. 5, 05.2021, p. 1010- 1020.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Cardiac Responses to Submaximal Isometric Contraction and Aerobic Exercise in Healthy Pregnancy
AU - Meah, Victoria L.
AU - Backx, Karianne
AU - Cockcroft, John R.
AU - Shave, Rob
AU - Stöhr, Eric Jean
N1 - Publisher Copyright: Copyright © 2020 by the American College of Sports Medicine.
PY - 2021/5
Y1 - 2021/5
N2 - PURPOSE: The increased physiological demand of pregnancy results in the profound adaptation of the maternal cardiovascular system, reflected by greater resting cardiac output and left ventricular (LV) deformation. Whether the increased resting demand alters acute cardiac responses to exercise in healthy pregnant women is not well understood. METHODS: Healthy nonpregnant (n = 18), pregnant (n = 14, 22-26 wk gestation), and postpartum women (n = 13, 12-16 wk postdelivery) underwent assessments of cardiac function and LV mechanics at rest, during a sustained isometric forearm contraction (30% maximum), and during low-intensity (LOW) and moderate-intensity (MOD) dynamic cycling exercise (25% and 50% peak power output). Significant differences (α = 0.05) were determined using ANCOVA and general linear model (resting value included as covariate). RESULTS: When accounting for higher resting cardiac output in pregnant women, pregnant women had greater cardiac output during isometric contraction (2.0 ± 0.3 L·min-1·m-1.83; nonpregnant, 1.3 ± 0.2 L·min-1·m-1.83; postpartum, 1.5 ± 0.5 L·min-1·m-1.83; P = 0.02) but similar values during dynamic cycling exercise (pregnant, LOW = 2.8 ± 0.4 L·min-1·m-1.83, MOD = 3.4 ± 0.7 L·min-1·m-1.83; nonpregnant, LOW = 2.4 ± 0.3 L·min-1·m-1.83, MOD = 3.0 ± 0.3 L·min-1·m-1.83; postpartum, LOW = 2.3 ± 0.4 L·min-1·m-1.83, MOD = 3.0 ± 0.5 L·min-1·m-1.83; P = 0.96). Basal circumferential strain was higher in pregnant women at rest, during the sustained isometric forearm contraction (-23.5% ± 1.2%; nonpregnant, -14.6% ± 1.4%; P = 0.001), and during dynamic cycling exercise (LOW = -27.0% ± 4.9%, MOD = -27.4% ± 4.6%; nonpregnant, LOW = -15.8% ± 4.5%, MOD = -15.2% ± 6.7%; P = 0.012); however, other parameters of LV mechanics were not different between groups. CONCLUSION: The results support that the maternal heart can appropriately respond to additional cardiac demand and altered loading experienced during acute isometric and dynamic exercise, although subtle differences in responses to these challenges were observed. In addition, the LV mechanics that underpin global cardiac function are greater in pregnant women during exercise, leading to the speculation that the hormonal milieu of pregnancy influences regional deformation.
AB - PURPOSE: The increased physiological demand of pregnancy results in the profound adaptation of the maternal cardiovascular system, reflected by greater resting cardiac output and left ventricular (LV) deformation. Whether the increased resting demand alters acute cardiac responses to exercise in healthy pregnant women is not well understood. METHODS: Healthy nonpregnant (n = 18), pregnant (n = 14, 22-26 wk gestation), and postpartum women (n = 13, 12-16 wk postdelivery) underwent assessments of cardiac function and LV mechanics at rest, during a sustained isometric forearm contraction (30% maximum), and during low-intensity (LOW) and moderate-intensity (MOD) dynamic cycling exercise (25% and 50% peak power output). Significant differences (α = 0.05) were determined using ANCOVA and general linear model (resting value included as covariate). RESULTS: When accounting for higher resting cardiac output in pregnant women, pregnant women had greater cardiac output during isometric contraction (2.0 ± 0.3 L·min-1·m-1.83; nonpregnant, 1.3 ± 0.2 L·min-1·m-1.83; postpartum, 1.5 ± 0.5 L·min-1·m-1.83; P = 0.02) but similar values during dynamic cycling exercise (pregnant, LOW = 2.8 ± 0.4 L·min-1·m-1.83, MOD = 3.4 ± 0.7 L·min-1·m-1.83; nonpregnant, LOW = 2.4 ± 0.3 L·min-1·m-1.83, MOD = 3.0 ± 0.3 L·min-1·m-1.83; postpartum, LOW = 2.3 ± 0.4 L·min-1·m-1.83, MOD = 3.0 ± 0.5 L·min-1·m-1.83; P = 0.96). Basal circumferential strain was higher in pregnant women at rest, during the sustained isometric forearm contraction (-23.5% ± 1.2%; nonpregnant, -14.6% ± 1.4%; P = 0.001), and during dynamic cycling exercise (LOW = -27.0% ± 4.9%, MOD = -27.4% ± 4.6%; nonpregnant, LOW = -15.8% ± 4.5%, MOD = -15.2% ± 6.7%; P = 0.012); however, other parameters of LV mechanics were not different between groups. CONCLUSION: The results support that the maternal heart can appropriately respond to additional cardiac demand and altered loading experienced during acute isometric and dynamic exercise, although subtle differences in responses to these challenges were observed. In addition, the LV mechanics that underpin global cardiac function are greater in pregnant women during exercise, leading to the speculation that the hormonal milieu of pregnancy influences regional deformation.
KW - AFTERLOAD
KW - CYCLING
KW - HEMODYNAMICS
KW - PRENATAL
UR - http://www.scopus.com/inward/record.url?scp=85104275991&partnerID=8YFLogxK
U2 - 10.1249/MSS.0000000000002554
DO - 10.1249/MSS.0000000000002554
M3 - Article
VL - 53
SP - 1010
EP - 1020
JO - Medicine and Science in Sports and Exercise
JF - Medicine and Science in Sports and Exercise
SN - 0195-9131
IS - 5
ER -