Automated Laboratory and Field Techniques to Determine Greenhouse Gas Emissions

Research output: Chapter in book/report/conference proceedingContribution to book/anthologyResearch

Authors

  • M. Zaman
  • K. Kleineidam
  • L. Bakken
  • J. Berendt
  • C. Bracken
  • K. Butterbach-Bahl
  • Z. Cai
  • S. X. Chang
  • T. Clough
  • K. Dawar
  • W. X. Ding
  • P. Dörsch
  • M. dos Reis Martins
  • C. Eckhardt
  • S. Fiedler
  • T. Frosch
  • J. Goopy
  • C.-M. Görres
  • A. Gupta
  • S. Henjes
  • M. E. G. Hofmann
  • M. A. Horn
  • M. M. R. Jahangir
  • A. Jansen-Willems
  • K. Lenhart
  • L. Heng
  • D. Lewicka-Szczebak
  • G. Lucic
  • L. Merbold
  • J. Mohn
  • L. Molstad
  • G. Moser
  • P. Murphy
  • A. Sanz-Cobena
  • M. Šimek
  • S. Urquiaga
  • R. Well
  • N. Wrage-Mönnig
  • S. Zaman
  • J. Zhang
  • C. Müller

Research Organisations

External Research Organisations

  • Justus Liebig University Giessen
  • International Atomic Energy Agency (IAEA)
  • Norwegian University of Life Sciences
  • University of Rostock
  • University College Dublin
  • Karlsruhe Institute of Technology (KIT)
  • Nanjing Normal University
  • University of Alberta
  • Lincoln University
  • The University of Agriculture, Peshawar
  • Chinese Academy of Sciences (CAS)
  • Embrapa Agrobiologia Seropédica, Brazilian Agricultural Research Corporation
  • Technische Universität Darmstadt
  • International Livestock Research Institute
  • Hochschule Geisenheim University
  • Bangladesh Agricultural University
  • Bingen University of Applied Sciences
  • University of Wroclaw
  • PICARRO
  • Laboratory for Air Pollution & Environmental Technology, Empa Dübendorf
  • Technical University of Madrid (UPM)
  • University of South Bohemia
  • Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries
  • University of Canterbury
View graph of relations

Details

Original languageEnglish
Title of host publicationMeasuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques
Subtitle of host publicationApplications of Nuclear Techniques for GHGs
EditorsMohammad Zaman, Lee Heng, Christoph Müller
Place of PublicationCham
PublisherSpringer International Publishing AG
Pages109-139
Number of pages31
ISBN (electronic)978-3-030-55396-8
ISBN (print)978-3-030-55395-1
Publication statusPublished - 30 Jan 2021

Abstract

MethodsMethod and techniques are described for automatedAutomation, automated measurements of greenhouse gasesGreenhouse Gases (GHGs) (GHGsGreenhouse Gases (GHGs)) in both the laboratory and the field. Robotic systems are currently available to measure the entire range of gases evolved from soils including dinitrogenDinitrogen (N2) (N2). These systems usually work on an exchange of the atmospheric N2Dinitrogen (N2) with heliumHelium (He) (He) so that N2Dinitrogen (N2) fluxes can be determined. Laboratory systems are often used in microbiology to determine kineticKinetics response reactions via the dynamics of all gaseous N species such as nitric oxideNitric oxide (NO) (NO), nitrous oxideNitrous oxide (N2O) (N2O), and N2Dinitrogen (N2). Latest HeHe incubation incubation techniques also take plants into account, in order to study the effect of plant--soil interactions on GHGsGreenhouse Gases (GHGs) and N2Dinitrogen (N2) production. The advantage of automatedAutomation, automated in-field techniques is that GHG emission rates can be determined at a high temporal resolution. This allows, for instance, to determine diurnal response reactions (e.g. with temperatureTemperature regulation, temperature) and GHGGreenhouse Gases (GHGs) dynamics over longer time periods.

Keywords

    GHG, Helium, N2, N2O

ASJC Scopus subject areas

Cite this

Automated Laboratory and Field Techniques to Determine Greenhouse Gas Emissions. / Zaman, M.; Kleineidam, K.; Bakken, L. et al.
Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques: Applications of Nuclear Techniques for GHGs. ed. / Mohammad Zaman; Lee Heng; Christoph Müller. Cham: Springer International Publishing AG, 2021. p. 109-139.

Research output: Chapter in book/report/conference proceedingContribution to book/anthologyResearch

Zaman, M, Kleineidam, K, Bakken, L, Berendt, J, Bracken, C, Butterbach-Bahl, K, Cai, Z, Chang, SX, Clough, T, Dawar, K, Ding, WX, Dörsch, P, dos Reis Martins, M, Eckhardt, C, Fiedler, S, Frosch, T, Goopy, J, Görres, C-M, Gupta, A, Henjes, S, Hofmann, MEG, Horn, MA, Jahangir, MMR, Jansen-Willems, A, Lenhart, K, Heng, L, Lewicka-Szczebak, D, Lucic, G, Merbold, L, Mohn, J, Molstad, L, Moser, G, Murphy, P, Sanz-Cobena, A, Šimek, M, Urquiaga, S, Well, R, Wrage-Mönnig, N, Zaman, S, Zhang, J & Müller, C 2021, Automated Laboratory and Field Techniques to Determine Greenhouse Gas Emissions. in M Zaman, L Heng & C Müller (eds), Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques: Applications of Nuclear Techniques for GHGs. Springer International Publishing AG, Cham, pp. 109-139. https://doi.org/10.1007/978-3-030-55396-8_3
Zaman, M., Kleineidam, K., Bakken, L., Berendt, J., Bracken, C., Butterbach-Bahl, K., Cai, Z., Chang, S. X., Clough, T., Dawar, K., Ding, W. X., Dörsch, P., dos Reis Martins, M., Eckhardt, C., Fiedler, S., Frosch, T., Goopy, J., Görres, C.-M., Gupta, A., ... Müller, C. (2021). Automated Laboratory and Field Techniques to Determine Greenhouse Gas Emissions. In M. Zaman, L. Heng, & C. Müller (Eds.), Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques: Applications of Nuclear Techniques for GHGs (pp. 109-139). Springer International Publishing AG. https://doi.org/10.1007/978-3-030-55396-8_3
Zaman M, Kleineidam K, Bakken L, Berendt J, Bracken C, Butterbach-Bahl K et al. Automated Laboratory and Field Techniques to Determine Greenhouse Gas Emissions. In Zaman M, Heng L, Müller C, editors, Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques: Applications of Nuclear Techniques for GHGs. Cham: Springer International Publishing AG. 2021. p. 109-139 doi: 10.1007/978-3-030-55396-8_3
Zaman, M. ; Kleineidam, K. ; Bakken, L. et al. / Automated Laboratory and Field Techniques to Determine Greenhouse Gas Emissions. Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques: Applications of Nuclear Techniques for GHGs. editor / Mohammad Zaman ; Lee Heng ; Christoph Müller. Cham : Springer International Publishing AG, 2021. pp. 109-139
Download
@inbook{99ca64ae72c14ee6a6895500dcdd88f7,
title = "Automated Laboratory and Field Techniques to Determine Greenhouse Gas Emissions",
abstract = "MethodsMethod and techniques are described for automatedAutomation, automated measurements of greenhouse gasesGreenhouse Gases (GHGs) (GHGsGreenhouse Gases (GHGs)) in both the laboratory and the field. Robotic systems are currently available to measure the entire range of gases evolved from soils including dinitrogenDinitrogen (N2) (N2). These systems usually work on an exchange of the atmospheric N2Dinitrogen (N2) with heliumHelium (He) (He) so that N2Dinitrogen (N2) fluxes can be determined. Laboratory systems are often used in microbiology to determine kineticKinetics response reactions via the dynamics of all gaseous N species such as nitric oxideNitric oxide (NO) (NO), nitrous oxideNitrous oxide (N2O) (N2O), and N2Dinitrogen (N2). Latest HeHe incubation incubation techniques also take plants into account, in order to study the effect of plant--soil interactions on GHGsGreenhouse Gases (GHGs) and N2Dinitrogen (N2) production. The advantage of automatedAutomation, automated in-field techniques is that GHG emission rates can be determined at a high temporal resolution. This allows, for instance, to determine diurnal response reactions (e.g. with temperatureTemperature regulation, temperature) and GHGGreenhouse Gases (GHGs) dynamics over longer time periods.",
keywords = "GHG, Helium, N2, N2O",
author = "M. Zaman and K. Kleineidam and L. Bakken and J. Berendt and C. Bracken and K. Butterbach-Bahl and Z. Cai and Chang, {S. X.} and T. Clough and K. Dawar and Ding, {W. X.} and P. D{\"o}rsch and {dos Reis Martins}, M. and C. Eckhardt and S. Fiedler and T. Frosch and J. Goopy and C.-M. G{\"o}rres and A. Gupta and S. Henjes and Hofmann, {M. E. G.} and Horn, {M. A.} and Jahangir, {M. M. R.} and A. Jansen-Willems and K. Lenhart and L. Heng and D. Lewicka-Szczebak and G. Lucic and L. Merbold and J. Mohn and L. Molstad and G. Moser and P. Murphy and A. Sanz-Cobena and M. {\v S}imek and S. Urquiaga and R. Well and N. Wrage-M{\"o}nnig and S. Zaman and J. Zhang and C. M{\"u}ller",
year = "2021",
month = jan,
day = "30",
doi = "10.1007/978-3-030-55396-8_3",
language = "English",
isbn = "978-3-030-55395-1",
pages = "109--139",
editor = "Mohammad Zaman and Lee Heng and Christoph M{\"u}ller",
booktitle = "Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques",
publisher = "Springer International Publishing AG",
address = "Switzerland",

}

Download

TY - CHAP

T1 - Automated Laboratory and Field Techniques to Determine Greenhouse Gas Emissions

AU - Zaman, M.

AU - Kleineidam, K.

AU - Bakken, L.

AU - Berendt, J.

AU - Bracken, C.

AU - Butterbach-Bahl, K.

AU - Cai, Z.

AU - Chang, S. X.

AU - Clough, T.

AU - Dawar, K.

AU - Ding, W. X.

AU - Dörsch, P.

AU - dos Reis Martins, M.

AU - Eckhardt, C.

AU - Fiedler, S.

AU - Frosch, T.

AU - Goopy, J.

AU - Görres, C.-M.

AU - Gupta, A.

AU - Henjes, S.

AU - Hofmann, M. E. G.

AU - Horn, M. A.

AU - Jahangir, M. M. R.

AU - Jansen-Willems, A.

AU - Lenhart, K.

AU - Heng, L.

AU - Lewicka-Szczebak, D.

AU - Lucic, G.

AU - Merbold, L.

AU - Mohn, J.

AU - Molstad, L.

AU - Moser, G.

AU - Murphy, P.

AU - Sanz-Cobena, A.

AU - Šimek, M.

AU - Urquiaga, S.

AU - Well, R.

AU - Wrage-Mönnig, N.

AU - Zaman, S.

AU - Zhang, J.

AU - Müller, C.

PY - 2021/1/30

Y1 - 2021/1/30

N2 - MethodsMethod and techniques are described for automatedAutomation, automated measurements of greenhouse gasesGreenhouse Gases (GHGs) (GHGsGreenhouse Gases (GHGs)) in both the laboratory and the field. Robotic systems are currently available to measure the entire range of gases evolved from soils including dinitrogenDinitrogen (N2) (N2). These systems usually work on an exchange of the atmospheric N2Dinitrogen (N2) with heliumHelium (He) (He) so that N2Dinitrogen (N2) fluxes can be determined. Laboratory systems are often used in microbiology to determine kineticKinetics response reactions via the dynamics of all gaseous N species such as nitric oxideNitric oxide (NO) (NO), nitrous oxideNitrous oxide (N2O) (N2O), and N2Dinitrogen (N2). Latest HeHe incubation incubation techniques also take plants into account, in order to study the effect of plant--soil interactions on GHGsGreenhouse Gases (GHGs) and N2Dinitrogen (N2) production. The advantage of automatedAutomation, automated in-field techniques is that GHG emission rates can be determined at a high temporal resolution. This allows, for instance, to determine diurnal response reactions (e.g. with temperatureTemperature regulation, temperature) and GHGGreenhouse Gases (GHGs) dynamics over longer time periods.

AB - MethodsMethod and techniques are described for automatedAutomation, automated measurements of greenhouse gasesGreenhouse Gases (GHGs) (GHGsGreenhouse Gases (GHGs)) in both the laboratory and the field. Robotic systems are currently available to measure the entire range of gases evolved from soils including dinitrogenDinitrogen (N2) (N2). These systems usually work on an exchange of the atmospheric N2Dinitrogen (N2) with heliumHelium (He) (He) so that N2Dinitrogen (N2) fluxes can be determined. Laboratory systems are often used in microbiology to determine kineticKinetics response reactions via the dynamics of all gaseous N species such as nitric oxideNitric oxide (NO) (NO), nitrous oxideNitrous oxide (N2O) (N2O), and N2Dinitrogen (N2). Latest HeHe incubation incubation techniques also take plants into account, in order to study the effect of plant--soil interactions on GHGsGreenhouse Gases (GHGs) and N2Dinitrogen (N2) production. The advantage of automatedAutomation, automated in-field techniques is that GHG emission rates can be determined at a high temporal resolution. This allows, for instance, to determine diurnal response reactions (e.g. with temperatureTemperature regulation, temperature) and GHGGreenhouse Gases (GHGs) dynamics over longer time periods.

KW - GHG

KW - Helium

KW - N2

KW - N2O

UR - http://www.scopus.com/inward/record.url?scp=85149191189&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-55396-8_3

DO - 10.1007/978-3-030-55396-8_3

M3 - Contribution to book/anthology

SN - 978-3-030-55395-1

SP - 109

EP - 139

BT - Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques

A2 - Zaman, Mohammad

A2 - Heng, Lee

A2 - Müller, Christoph

PB - Springer International Publishing AG

CY - Cham

ER -

By the same author(s)