Details
Original language | English |
---|---|
Article number | 120002 |
Number of pages | 15 |
Journal | Engineering structures |
Volume | 331 |
Early online date | 3 Mar 2025 |
Publication status | Published - 15 May 2025 |
Abstract
In earthquake-prone regions like Iceland, where an average of 500 earthquakes occurs weekly, modular buildings constructed according to EU standards encounter significant seismic challenges. This study investigates the seismic performance of nonlinear modular building models under both near-field pulse-type ground motions and fully non-stationary non-pulse-like stochastic ground motions, generated through Monte Carlo Simulation (MCS) and Latinized Partially Stratified Sampling (LPSS) methods. Key structural response parameters, including inter-story drift, base shear, and acceleration, are analyzed, with their probability distribution functions (PDFs) and fragility functions evaluated against industry-standard limit states, such as those defined by FEMA. Results reveal that pulse-type ground motions, characterized by large, high-velocity pulses, result in a higher probability of failure, especially in the width direction, compared to non-pulse-like stochastic ground motions. The top floor exhibits greater vulnerability under seismic forces, underscoring the need for focused structural reinforcement. The findings highlight the importance of considering both pulse-type and non-pulse-like stochastic ground motions in structural design practices and seismic codes to enhance the resilience and safety of modular buildings in earthquake-prone areas. This study contributes to the seismic engineering field by providing insights into the vulnerability and robustness of modular structures under diverse seismic loading conditions.
Keywords
- Near-field ground motions, Nonlinear modular buildings, Seismic performance, Structural resilience, Vulnerability assessment
ASJC Scopus subject areas
- Engineering(all)
- Civil and Structural Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Engineering structures, Vol. 331, 120002, 15.05.2025.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Assessing seismic vulnerability of modular buildings under earthquake ground motions
AU - Elias, S.
AU - Beer, M.
AU - Chen, J.
N1 - Publisher Copyright: © 2025 The Authors
PY - 2025/5/15
Y1 - 2025/5/15
N2 - In earthquake-prone regions like Iceland, where an average of 500 earthquakes occurs weekly, modular buildings constructed according to EU standards encounter significant seismic challenges. This study investigates the seismic performance of nonlinear modular building models under both near-field pulse-type ground motions and fully non-stationary non-pulse-like stochastic ground motions, generated through Monte Carlo Simulation (MCS) and Latinized Partially Stratified Sampling (LPSS) methods. Key structural response parameters, including inter-story drift, base shear, and acceleration, are analyzed, with their probability distribution functions (PDFs) and fragility functions evaluated against industry-standard limit states, such as those defined by FEMA. Results reveal that pulse-type ground motions, characterized by large, high-velocity pulses, result in a higher probability of failure, especially in the width direction, compared to non-pulse-like stochastic ground motions. The top floor exhibits greater vulnerability under seismic forces, underscoring the need for focused structural reinforcement. The findings highlight the importance of considering both pulse-type and non-pulse-like stochastic ground motions in structural design practices and seismic codes to enhance the resilience and safety of modular buildings in earthquake-prone areas. This study contributes to the seismic engineering field by providing insights into the vulnerability and robustness of modular structures under diverse seismic loading conditions.
AB - In earthquake-prone regions like Iceland, where an average of 500 earthquakes occurs weekly, modular buildings constructed according to EU standards encounter significant seismic challenges. This study investigates the seismic performance of nonlinear modular building models under both near-field pulse-type ground motions and fully non-stationary non-pulse-like stochastic ground motions, generated through Monte Carlo Simulation (MCS) and Latinized Partially Stratified Sampling (LPSS) methods. Key structural response parameters, including inter-story drift, base shear, and acceleration, are analyzed, with their probability distribution functions (PDFs) and fragility functions evaluated against industry-standard limit states, such as those defined by FEMA. Results reveal that pulse-type ground motions, characterized by large, high-velocity pulses, result in a higher probability of failure, especially in the width direction, compared to non-pulse-like stochastic ground motions. The top floor exhibits greater vulnerability under seismic forces, underscoring the need for focused structural reinforcement. The findings highlight the importance of considering both pulse-type and non-pulse-like stochastic ground motions in structural design practices and seismic codes to enhance the resilience and safety of modular buildings in earthquake-prone areas. This study contributes to the seismic engineering field by providing insights into the vulnerability and robustness of modular structures under diverse seismic loading conditions.
KW - Near-field ground motions
KW - Nonlinear modular buildings
KW - Seismic performance
KW - Structural resilience
KW - Vulnerability assessment
UR - http://www.scopus.com/inward/record.url?scp=85219099076&partnerID=8YFLogxK
U2 - 10.1016/j.engstruct.2025.120002
DO - 10.1016/j.engstruct.2025.120002
M3 - Article
AN - SCOPUS:85219099076
VL - 331
JO - Engineering structures
JF - Engineering structures
SN - 0141-0296
M1 - 120002
ER -