Absolute gravity observations in Estonia from 1995 to 2017

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Tõnis Oja
  • Jaakko Mäkinen
  • Mirjam Bilker-Koivula
  • Ludger Timmen

Research Organisations

External Research Organisations

  • Estonian Land Board
  • National Land Survey of Finland (NLS)
View graph of relations

Details

Original languageEnglish
Article number131
Number of pages16
JournalJournal of geodesy
Volume95
Issue number12
Early online date23 Nov 2021
Publication statusPublished - Dec 2021

Abstract

The establishment of a national gravity standard based on international metrological standards is a high priority for the Estonian geodetic, geophysical, and metrological community. With the presently available gravimetric instruments and models, geoscientific research at the level of 10 - 9g is possible and requires a homogeneous performance of the definition of gravity standards and of measurements of gravity values at the regional to global scale. From 1995 to 2017, five absolute gravimetric measurement campaigns have been carried out to determine the absolute value of gravity acceleration at all of the seven Estonian gravity network points by deploying JILAg, FG5, and FG5X gravimeters. In this study, the absolute gravity (AG) data were collected and reprocessed to unify the corrections due to local vertical gravity gradient, the self-attraction, and diffraction of the absolute gravimeter. The full set of gravity observations was used to estimate the rates of secular gravity change on the periphery of the Fennoscandian postglacial rebound area, which is continuously deforming due to the glacial isostatic adjustment (GIA). The observed gravity rates, which have been estimated using a linear regression model, differ from the gravity rates that are derived from the vertical velocities of the continuous Global Navigation Satellite System (GNSS) stations and the land uplift model NKG2016LU of the Nordic Commission of Geodesy (NKG) for northern Europe. These differences could be the effect of an insufficient amount of data, seasonal, and inter-annual variation in the hydrology on the observed gravity rates, and the offsets of gravimeters. The discrepancies, nevertheless, are within the uncertainties of observed and derived gravity rates. Similarly, an estimated slope of a linear relation between observed gravity rates and vertical velocities is consistent with a GIA model prediction. The effect of possible offsets of gravimeters on Estonian AG data was corrected, based on the results of international comparisons of absolute gravimeters, as well as the regional analysis of Finnish AG data. The linear regression with corrected data did not improve the fit with the rates that were based on vertical velocities. Further, the linear relation between observed gravity and uplift rates deviated more from the GIA prediction. Therefore, our results did not confirm the positive effect of gravimeter offset correction. However, in order to potentially obtain conclusions that are more solid, the absolute gravity measurements should be continued in Estonia to combine longer and denser gravity time series with the modelling of environmental effects (e.g. regional hydrology, the loading of Baltic Sea). This would allow to improve the accuracy of the national gravity frame and observed gravity rates which, in turn, would support the establishment and extension of the International Gravity Reference Frame (IGRF) in the Nordic–Baltic region by following the internationally agreed rules and recommendations of the new global gravity standard.

Keywords

    Absolute gravimetry, Estonia, Glacial isostatic adjustment, Gravity change rate, Land uplift, Postglacial rebound

ASJC Scopus subject areas

Cite this

Absolute gravity observations in Estonia from 1995 to 2017. / Oja, Tõnis; Mäkinen, Jaakko; Bilker-Koivula, Mirjam et al.
In: Journal of geodesy, Vol. 95, No. 12, 131, 12.2021.

Research output: Contribution to journalArticleResearchpeer review

Oja, T, Mäkinen, J, Bilker-Koivula, M & Timmen, L 2021, 'Absolute gravity observations in Estonia from 1995 to 2017', Journal of geodesy, vol. 95, no. 12, 131. https://doi.org/10.1007/s00190-021-01580-y
Oja, T., Mäkinen, J., Bilker-Koivula, M., & Timmen, L. (2021). Absolute gravity observations in Estonia from 1995 to 2017. Journal of geodesy, 95(12), Article 131. https://doi.org/10.1007/s00190-021-01580-y
Oja T, Mäkinen J, Bilker-Koivula M, Timmen L. Absolute gravity observations in Estonia from 1995 to 2017. Journal of geodesy. 2021 Dec;95(12):131. Epub 2021 Nov 23. doi: 10.1007/s00190-021-01580-y
Oja, Tõnis ; Mäkinen, Jaakko ; Bilker-Koivula, Mirjam et al. / Absolute gravity observations in Estonia from 1995 to 2017. In: Journal of geodesy. 2021 ; Vol. 95, No. 12.
Download
@article{d2ac2ccbd1e443618a40688fd659d7c9,
title = "Absolute gravity observations in Estonia from 1995 to 2017",
abstract = "The establishment of a national gravity standard based on international metrological standards is a high priority for the Estonian geodetic, geophysical, and metrological community. With the presently available gravimetric instruments and models, geoscientific research at the level of 10 - 9g is possible and requires a homogeneous performance of the definition of gravity standards and of measurements of gravity values at the regional to global scale. From 1995 to 2017, five absolute gravimetric measurement campaigns have been carried out to determine the absolute value of gravity acceleration at all of the seven Estonian gravity network points by deploying JILAg, FG5, and FG5X gravimeters. In this study, the absolute gravity (AG) data were collected and reprocessed to unify the corrections due to local vertical gravity gradient, the self-attraction, and diffraction of the absolute gravimeter. The full set of gravity observations was used to estimate the rates of secular gravity change on the periphery of the Fennoscandian postglacial rebound area, which is continuously deforming due to the glacial isostatic adjustment (GIA). The observed gravity rates, which have been estimated using a linear regression model, differ from the gravity rates that are derived from the vertical velocities of the continuous Global Navigation Satellite System (GNSS) stations and the land uplift model NKG2016LU of the Nordic Commission of Geodesy (NKG) for northern Europe. These differences could be the effect of an insufficient amount of data, seasonal, and inter-annual variation in the hydrology on the observed gravity rates, and the offsets of gravimeters. The discrepancies, nevertheless, are within the uncertainties of observed and derived gravity rates. Similarly, an estimated slope of a linear relation between observed gravity rates and vertical velocities is consistent with a GIA model prediction. The effect of possible offsets of gravimeters on Estonian AG data was corrected, based on the results of international comparisons of absolute gravimeters, as well as the regional analysis of Finnish AG data. The linear regression with corrected data did not improve the fit with the rates that were based on vertical velocities. Further, the linear relation between observed gravity and uplift rates deviated more from the GIA prediction. Therefore, our results did not confirm the positive effect of gravimeter offset correction. However, in order to potentially obtain conclusions that are more solid, the absolute gravity measurements should be continued in Estonia to combine longer and denser gravity time series with the modelling of environmental effects (e.g. regional hydrology, the loading of Baltic Sea). This would allow to improve the accuracy of the national gravity frame and observed gravity rates which, in turn, would support the establishment and extension of the International Gravity Reference Frame (IGRF) in the Nordic–Baltic region by following the internationally agreed rules and recommendations of the new global gravity standard.",
keywords = "Absolute gravimetry, Estonia, Glacial isostatic adjustment, Gravity change rate, Land uplift, Postglacial rebound",
author = "T{\~o}nis Oja and Jaakko M{\"a}kinen and Mirjam Bilker-Koivula and Ludger Timmen",
note = "Funding Information: Dr. Olga Gitlein is acknowledged for her contribution to the AG campaign of 2007 in Estonia. Dr. Maaria Nordman kindly shared the time series of non-tidal loading effect due to the Baltic Sea for Estonian AG stations. Five reviewers are thanked for critical reading to improve and clarify the manuscript. The figures have been generated using the GMT software (Wessel et al. 2013). ",
year = "2021",
month = dec,
doi = "10.1007/s00190-021-01580-y",
language = "English",
volume = "95",
journal = "Journal of geodesy",
issn = "0949-7714",
publisher = "Springer Verlag",
number = "12",

}

Download

TY - JOUR

T1 - Absolute gravity observations in Estonia from 1995 to 2017

AU - Oja, Tõnis

AU - Mäkinen, Jaakko

AU - Bilker-Koivula, Mirjam

AU - Timmen, Ludger

N1 - Funding Information: Dr. Olga Gitlein is acknowledged for her contribution to the AG campaign of 2007 in Estonia. Dr. Maaria Nordman kindly shared the time series of non-tidal loading effect due to the Baltic Sea for Estonian AG stations. Five reviewers are thanked for critical reading to improve and clarify the manuscript. The figures have been generated using the GMT software (Wessel et al. 2013).

PY - 2021/12

Y1 - 2021/12

N2 - The establishment of a national gravity standard based on international metrological standards is a high priority for the Estonian geodetic, geophysical, and metrological community. With the presently available gravimetric instruments and models, geoscientific research at the level of 10 - 9g is possible and requires a homogeneous performance of the definition of gravity standards and of measurements of gravity values at the regional to global scale. From 1995 to 2017, five absolute gravimetric measurement campaigns have been carried out to determine the absolute value of gravity acceleration at all of the seven Estonian gravity network points by deploying JILAg, FG5, and FG5X gravimeters. In this study, the absolute gravity (AG) data were collected and reprocessed to unify the corrections due to local vertical gravity gradient, the self-attraction, and diffraction of the absolute gravimeter. The full set of gravity observations was used to estimate the rates of secular gravity change on the periphery of the Fennoscandian postglacial rebound area, which is continuously deforming due to the glacial isostatic adjustment (GIA). The observed gravity rates, which have been estimated using a linear regression model, differ from the gravity rates that are derived from the vertical velocities of the continuous Global Navigation Satellite System (GNSS) stations and the land uplift model NKG2016LU of the Nordic Commission of Geodesy (NKG) for northern Europe. These differences could be the effect of an insufficient amount of data, seasonal, and inter-annual variation in the hydrology on the observed gravity rates, and the offsets of gravimeters. The discrepancies, nevertheless, are within the uncertainties of observed and derived gravity rates. Similarly, an estimated slope of a linear relation between observed gravity rates and vertical velocities is consistent with a GIA model prediction. The effect of possible offsets of gravimeters on Estonian AG data was corrected, based on the results of international comparisons of absolute gravimeters, as well as the regional analysis of Finnish AG data. The linear regression with corrected data did not improve the fit with the rates that were based on vertical velocities. Further, the linear relation between observed gravity and uplift rates deviated more from the GIA prediction. Therefore, our results did not confirm the positive effect of gravimeter offset correction. However, in order to potentially obtain conclusions that are more solid, the absolute gravity measurements should be continued in Estonia to combine longer and denser gravity time series with the modelling of environmental effects (e.g. regional hydrology, the loading of Baltic Sea). This would allow to improve the accuracy of the national gravity frame and observed gravity rates which, in turn, would support the establishment and extension of the International Gravity Reference Frame (IGRF) in the Nordic–Baltic region by following the internationally agreed rules and recommendations of the new global gravity standard.

AB - The establishment of a national gravity standard based on international metrological standards is a high priority for the Estonian geodetic, geophysical, and metrological community. With the presently available gravimetric instruments and models, geoscientific research at the level of 10 - 9g is possible and requires a homogeneous performance of the definition of gravity standards and of measurements of gravity values at the regional to global scale. From 1995 to 2017, five absolute gravimetric measurement campaigns have been carried out to determine the absolute value of gravity acceleration at all of the seven Estonian gravity network points by deploying JILAg, FG5, and FG5X gravimeters. In this study, the absolute gravity (AG) data were collected and reprocessed to unify the corrections due to local vertical gravity gradient, the self-attraction, and diffraction of the absolute gravimeter. The full set of gravity observations was used to estimate the rates of secular gravity change on the periphery of the Fennoscandian postglacial rebound area, which is continuously deforming due to the glacial isostatic adjustment (GIA). The observed gravity rates, which have been estimated using a linear regression model, differ from the gravity rates that are derived from the vertical velocities of the continuous Global Navigation Satellite System (GNSS) stations and the land uplift model NKG2016LU of the Nordic Commission of Geodesy (NKG) for northern Europe. These differences could be the effect of an insufficient amount of data, seasonal, and inter-annual variation in the hydrology on the observed gravity rates, and the offsets of gravimeters. The discrepancies, nevertheless, are within the uncertainties of observed and derived gravity rates. Similarly, an estimated slope of a linear relation between observed gravity rates and vertical velocities is consistent with a GIA model prediction. The effect of possible offsets of gravimeters on Estonian AG data was corrected, based on the results of international comparisons of absolute gravimeters, as well as the regional analysis of Finnish AG data. The linear regression with corrected data did not improve the fit with the rates that were based on vertical velocities. Further, the linear relation between observed gravity and uplift rates deviated more from the GIA prediction. Therefore, our results did not confirm the positive effect of gravimeter offset correction. However, in order to potentially obtain conclusions that are more solid, the absolute gravity measurements should be continued in Estonia to combine longer and denser gravity time series with the modelling of environmental effects (e.g. regional hydrology, the loading of Baltic Sea). This would allow to improve the accuracy of the national gravity frame and observed gravity rates which, in turn, would support the establishment and extension of the International Gravity Reference Frame (IGRF) in the Nordic–Baltic region by following the internationally agreed rules and recommendations of the new global gravity standard.

KW - Absolute gravimetry

KW - Estonia

KW - Glacial isostatic adjustment

KW - Gravity change rate

KW - Land uplift

KW - Postglacial rebound

UR - http://www.scopus.com/inward/record.url?scp=85119873384&partnerID=8YFLogxK

U2 - 10.1007/s00190-021-01580-y

DO - 10.1007/s00190-021-01580-y

M3 - Article

AN - SCOPUS:85119873384

VL - 95

JO - Journal of geodesy

JF - Journal of geodesy

SN - 0949-7714

IS - 12

M1 - 131

ER -