115In+ - 172Yb+  Coulomb Crystal Clock with 2.5×10-18 Systematic Uncertainty

Research output: Contribution to journalArticleResearchpeer review

Authors

  • H. N. Hausser
  • J. Keller
  • T. Nordmann
  • N. M. Bhatt
  • J. Kiethe
  • H. Liu
  • I. M. Richter
  • M. Von Boehn
  • J. Rahm
  • S. Weyers
  • E. Benkler
  • B. Lipphardt
  • S. Dörscher
  • K. Stahl
  • J. Klose
  • C. Lisdat
  • M. Filzinger
  • N. Huntemann
  • E. Peik
  • T. E. Mehlstäubler

External Research Organisations

  • Physikalisch-Technische Bundesanstalt PTB
View graph of relations

Details

Original languageEnglish
Article number023201
Number of pages6
JournalPhysical Review Letters
Volume134
Issue number2
Publication statusPublished - 16 Jan 2025

Abstract

We present a scalable mixed-species Coulomb crystal clock based on the S01↔P30 transition in In+115. Yb+172 ions are cotrapped and used for sympathetic cooling. Reproducible interrogation conditions for mixed-species Coulomb crystals are ensured by a conditional preparation sequence with permutation control. We demonstrate clock operation with a 1In+-3Yb+ crystal, achieving a relative systematic uncertainty of 2.5×10-18 and a relative frequency instability of 1.6×10-15/τ/1 s. We report on absolute frequency measurements with an uncertainty of 1.3×10-16 and optical frequency comparisons with clocks based on Yb+171 (E3) and Sr87. With a fractional uncertainty of 4.4×10-18, the former is - to our knowledge - the most accurate frequency ratio value reported to date. For the In+115/Sr87 ratio, we improve upon the best previous measurement by more than an order of magnitude. We also demonstrate operation with four In+115 clock ions, which reduces the instability to 9.2×10-16/τ/1 s.

Keywords

    physics.atom-ph, quant-ph

ASJC Scopus subject areas

Cite this

115In+ - 172Yb+  Coulomb Crystal Clock with 2.5×10-18 Systematic Uncertainty. / Hausser, H. N.; Keller, J.; Nordmann, T. et al.
In: Physical Review Letters, Vol. 134, No. 2, 023201, 16.01.2025.

Research output: Contribution to journalArticleResearchpeer review

Hausser, HN, Keller, J, Nordmann, T, Bhatt, NM, Kiethe, J, Liu, H, Richter, IM, Von Boehn, M, Rahm, J, Weyers, S, Benkler, E, Lipphardt, B, Dörscher, S, Stahl, K, Klose, J, Lisdat, C, Filzinger, M, Huntemann, N, Peik, E & Mehlstäubler, TE 2025, '115In+ - 172Yb+  Coulomb Crystal Clock with 2.5×10-18 Systematic Uncertainty', Physical Review Letters, vol. 134, no. 2, 023201. https://doi.org/10.48550/arXiv.2402.16807, https://doi.org/10.1103/PhysRevLett.134.023201
Hausser, H. N., Keller, J., Nordmann, T., Bhatt, N. M., Kiethe, J., Liu, H., Richter, I. M., Von Boehn, M., Rahm, J., Weyers, S., Benkler, E., Lipphardt, B., Dörscher, S., Stahl, K., Klose, J., Lisdat, C., Filzinger, M., Huntemann, N., Peik, E., & Mehlstäubler, T. E. (2025). 115In+ - 172Yb+  Coulomb Crystal Clock with 2.5×10-18 Systematic Uncertainty. Physical Review Letters, 134(2), Article 023201. https://doi.org/10.48550/arXiv.2402.16807, https://doi.org/10.1103/PhysRevLett.134.023201
Hausser HN, Keller J, Nordmann T, Bhatt NM, Kiethe J, Liu H et al. 115In+ - 172Yb+  Coulomb Crystal Clock with 2.5×10-18 Systematic Uncertainty. Physical Review Letters. 2025 Jan 16;134(2):023201. doi: 10.48550/arXiv.2402.16807, 10.1103/PhysRevLett.134.023201
Hausser, H. N. ; Keller, J. ; Nordmann, T. et al. / 115In+ - 172Yb+  Coulomb Crystal Clock with 2.5×10-18 Systematic Uncertainty. In: Physical Review Letters. 2025 ; Vol. 134, No. 2.
Download
@article{2568aa337556432eb7d715a9930d5665,
title = "115In+ - 172Yb+  Coulomb Crystal Clock with 2.5×10-18 Systematic Uncertainty",
abstract = "We present a scalable mixed-species Coulomb crystal clock based on the S01↔P30 transition in In+115. Yb+172 ions are cotrapped and used for sympathetic cooling. Reproducible interrogation conditions for mixed-species Coulomb crystals are ensured by a conditional preparation sequence with permutation control. We demonstrate clock operation with a 1In+-3Yb+ crystal, achieving a relative systematic uncertainty of 2.5×10-18 and a relative frequency instability of 1.6×10-15/τ/1 s. We report on absolute frequency measurements with an uncertainty of 1.3×10-16 and optical frequency comparisons with clocks based on Yb+171 (E3) and Sr87. With a fractional uncertainty of 4.4×10-18, the former is - to our knowledge - the most accurate frequency ratio value reported to date. For the In+115/Sr87 ratio, we improve upon the best previous measurement by more than an order of magnitude. We also demonstrate operation with four In+115 clock ions, which reduces the instability to 9.2×10-16/τ/1 s.",
keywords = "physics.atom-ph, quant-ph",
author = "Hausser, {H. N.} and J. Keller and T. Nordmann and Bhatt, {N. M.} and J. Kiethe and H. Liu and Richter, {I. M.} and {Von Boehn}, M. and J. Rahm and S. Weyers and E. Benkler and B. Lipphardt and S. D{\"o}rscher and K. Stahl and J. Klose and C. Lisdat and M. Filzinger and N. Huntemann and E. Peik and Mehlst{\"a}ubler, {T. E.}",
note = "Publisher Copyright: {\textcopyright} 2025 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the {"}https://creativecommons.org/licenses/by/4.0/{"}Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.",
year = "2025",
month = jan,
day = "16",
doi = "10.48550/arXiv.2402.16807",
language = "English",
volume = "134",
journal = "Physical Review Letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "2",

}

Download

TY - JOUR

T1 - 115In+ - 172Yb+  Coulomb Crystal Clock with 2.5×10-18 Systematic Uncertainty

AU - Hausser, H. N.

AU - Keller, J.

AU - Nordmann, T.

AU - Bhatt, N. M.

AU - Kiethe, J.

AU - Liu, H.

AU - Richter, I. M.

AU - Von Boehn, M.

AU - Rahm, J.

AU - Weyers, S.

AU - Benkler, E.

AU - Lipphardt, B.

AU - Dörscher, S.

AU - Stahl, K.

AU - Klose, J.

AU - Lisdat, C.

AU - Filzinger, M.

AU - Huntemann, N.

AU - Peik, E.

AU - Mehlstäubler, T. E.

N1 - Publisher Copyright: © 2025 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

PY - 2025/1/16

Y1 - 2025/1/16

N2 - We present a scalable mixed-species Coulomb crystal clock based on the S01↔P30 transition in In+115. Yb+172 ions are cotrapped and used for sympathetic cooling. Reproducible interrogation conditions for mixed-species Coulomb crystals are ensured by a conditional preparation sequence with permutation control. We demonstrate clock operation with a 1In+-3Yb+ crystal, achieving a relative systematic uncertainty of 2.5×10-18 and a relative frequency instability of 1.6×10-15/τ/1 s. We report on absolute frequency measurements with an uncertainty of 1.3×10-16 and optical frequency comparisons with clocks based on Yb+171 (E3) and Sr87. With a fractional uncertainty of 4.4×10-18, the former is - to our knowledge - the most accurate frequency ratio value reported to date. For the In+115/Sr87 ratio, we improve upon the best previous measurement by more than an order of magnitude. We also demonstrate operation with four In+115 clock ions, which reduces the instability to 9.2×10-16/τ/1 s.

AB - We present a scalable mixed-species Coulomb crystal clock based on the S01↔P30 transition in In+115. Yb+172 ions are cotrapped and used for sympathetic cooling. Reproducible interrogation conditions for mixed-species Coulomb crystals are ensured by a conditional preparation sequence with permutation control. We demonstrate clock operation with a 1In+-3Yb+ crystal, achieving a relative systematic uncertainty of 2.5×10-18 and a relative frequency instability of 1.6×10-15/τ/1 s. We report on absolute frequency measurements with an uncertainty of 1.3×10-16 and optical frequency comparisons with clocks based on Yb+171 (E3) and Sr87. With a fractional uncertainty of 4.4×10-18, the former is - to our knowledge - the most accurate frequency ratio value reported to date. For the In+115/Sr87 ratio, we improve upon the best previous measurement by more than an order of magnitude. We also demonstrate operation with four In+115 clock ions, which reduces the instability to 9.2×10-16/τ/1 s.

KW - physics.atom-ph

KW - quant-ph

UR - http://www.scopus.com/inward/record.url?scp=85215208426&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2402.16807

DO - 10.48550/arXiv.2402.16807

M3 - Article

VL - 134

JO - Physical Review Letters

JF - Physical Review Letters

SN - 0031-9007

IS - 2

M1 - 023201

ER -