Zukunftslabor Produktion: Vernetzung, Modellierung und Optimierung in der industriellen Produktion

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Jonas Kallisch
  • Berend Denkena
  • Kathrin Kramer
  • Lukas Stürenburg
  • Slava Pachandrin
  • Markus Rokicki
  • Jörg Walter
  • Marcus Nein
  • Marvin Voss
  • Christoph Wunck
  • Karl Heinz Niemann
  • Matthias Schmidt
  • Klaus Dilger
  • Claudia Niederée
  • Norbert Hoffmann

Externe Organisationen

  • Hochschule Emden/Leer
  • Leuphana Universität Lüneburg
  • Technische Universität Braunschweig
  • OFFIS - Institut für Informatik
  • Hochschule Hannover (HsH)
Forschungs-netzwerk anzeigen

Details

Titel in ÜbersetzungFuture Lab Production Networking, Modeling and Optimization of the Industrial Production
OriginalspracheDeutsch
Seiten (von - bis)372-377
Seitenumfang6
FachzeitschriftZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb
Jahrgang119
Ausgabenummer5
PublikationsstatusVeröffentlicht - 30 Apr. 2024

Abstract

The Future Lab Production demonstrates the potentials of digitalisation by using the die casting process as an example process. The project shows how manufacturing companies can digitalise their existing machines, analyse their data and exchange information along the supply chain while maintaining data sovereignty. The aim is to support companies with digitalisation from the machine to data platforms. The article describes the methods used, the concepts developed and their benefits.

Schlagwörter

    Digital Twin, Information Exchange, Machine Learning, Manufacturing Network, Process Control, Retrofitting

ASJC Scopus Sachgebiete

Zitieren

Zukunftslabor Produktion: Vernetzung, Modellierung und Optimierung in der industriellen Produktion. / Kallisch, Jonas; Denkena, Berend; Kramer, Kathrin et al.
in: ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, Jahrgang 119, Nr. 5, 30.04.2024, S. 372-377.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Kallisch, J, Denkena, B, Kramer, K, Stürenburg, L, Pachandrin, S, Rokicki, M, Walter, J, Nein, M, Voss, M, Wunck, C, Niemann, KH, Schmidt, M, Dilger, K, Niederée, C & Hoffmann, N 2024, 'Zukunftslabor Produktion: Vernetzung, Modellierung und Optimierung in der industriellen Produktion', ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, Jg. 119, Nr. 5, S. 372-377. https://doi.org/10.1515/zwf-2024-1061
Kallisch, J., Denkena, B., Kramer, K., Stürenburg, L., Pachandrin, S., Rokicki, M., Walter, J., Nein, M., Voss, M., Wunck, C., Niemann, K. H., Schmidt, M., Dilger, K., Niederée, C., & Hoffmann, N. (2024). Zukunftslabor Produktion: Vernetzung, Modellierung und Optimierung in der industriellen Produktion. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 119(5), 372-377. https://doi.org/10.1515/zwf-2024-1061
Kallisch J, Denkena B, Kramer K, Stürenburg L, Pachandrin S, Rokicki M et al. Zukunftslabor Produktion: Vernetzung, Modellierung und Optimierung in der industriellen Produktion. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb. 2024 Apr 30;119(5):372-377. doi: 10.1515/zwf-2024-1061
Kallisch, Jonas ; Denkena, Berend ; Kramer, Kathrin et al. / Zukunftslabor Produktion : Vernetzung, Modellierung und Optimierung in der industriellen Produktion. in: ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb. 2024 ; Jahrgang 119, Nr. 5. S. 372-377.
Download
@article{d1aef52a57ca48cfa7dd0511bb85cb06,
title = "Zukunftslabor Produktion: Vernetzung, Modellierung und Optimierung in der industriellen Produktion",
abstract = "The Future Lab Production demonstrates the potentials of digitalisation by using the die casting process as an example process. The project shows how manufacturing companies can digitalise their existing machines, analyse their data and exchange information along the supply chain while maintaining data sovereignty. The aim is to support companies with digitalisation from the machine to data platforms. The article describes the methods used, the concepts developed and their benefits.",
keywords = "Digital Twin, Information Exchange, Machine Learning, Manufacturing Network, Process Control, Retrofitting",
author = "Jonas Kallisch and Berend Denkena and Kathrin Kramer and Lukas St{\"u}renburg and Slava Pachandrin and Markus Rokicki and J{\"o}rg Walter and Marcus Nein and Marvin Voss and Christoph Wunck and Niemann, {Karl Heinz} and Matthias Schmidt and Klaus Dilger and Claudia Nieder{\'e}e and Norbert Hoffmann",
note = "Publisher Copyright: {\textcopyright} 2024 Walter de Gruyter GmbH, Berlin/Boston, Germany.",
year = "2024",
month = apr,
day = "30",
doi = "10.1515/zwf-2024-1061",
language = "Deutsch",
volume = "119",
pages = "372--377",
number = "5",

}

Download

TY - JOUR

T1 - Zukunftslabor Produktion

T2 - Vernetzung, Modellierung und Optimierung in der industriellen Produktion

AU - Kallisch, Jonas

AU - Denkena, Berend

AU - Kramer, Kathrin

AU - Stürenburg, Lukas

AU - Pachandrin, Slava

AU - Rokicki, Markus

AU - Walter, Jörg

AU - Nein, Marcus

AU - Voss, Marvin

AU - Wunck, Christoph

AU - Niemann, Karl Heinz

AU - Schmidt, Matthias

AU - Dilger, Klaus

AU - Niederée, Claudia

AU - Hoffmann, Norbert

N1 - Publisher Copyright: © 2024 Walter de Gruyter GmbH, Berlin/Boston, Germany.

PY - 2024/4/30

Y1 - 2024/4/30

N2 - The Future Lab Production demonstrates the potentials of digitalisation by using the die casting process as an example process. The project shows how manufacturing companies can digitalise their existing machines, analyse their data and exchange information along the supply chain while maintaining data sovereignty. The aim is to support companies with digitalisation from the machine to data platforms. The article describes the methods used, the concepts developed and their benefits.

AB - The Future Lab Production demonstrates the potentials of digitalisation by using the die casting process as an example process. The project shows how manufacturing companies can digitalise their existing machines, analyse their data and exchange information along the supply chain while maintaining data sovereignty. The aim is to support companies with digitalisation from the machine to data platforms. The article describes the methods used, the concepts developed and their benefits.

KW - Digital Twin

KW - Information Exchange

KW - Machine Learning

KW - Manufacturing Network

KW - Process Control

KW - Retrofitting

UR - http://www.scopus.com/inward/record.url?scp=85193920866&partnerID=8YFLogxK

U2 - 10.1515/zwf-2024-1061

DO - 10.1515/zwf-2024-1061

M3 - Artikel

AN - SCOPUS:85193920866

VL - 119

SP - 372

EP - 377

JO - ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb

JF - ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb

SN - 0947-0085

IS - 5

ER -