Loading [MathJax]/extensions/tex2jax.js

Unbounded generators of dynamical semigroups

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autorschaft

  • Inken Siemon

Organisationseinheiten

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades18 Dez. 2023
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2024

Abstract

Die Zeitentwicklung eines geschlossenen Quantensystems wurde recht früh in der
Geschichte der Quantenphysik beschrieben. Ihre Dynamik ist reversibel und die Zeit-
entwicklung wird implementiert durch eine stetige unitäre Gruppe, die wiederum
von einem Hamilton-Operator erzeugt wird. Somit haben wir eine vollständige ma-
thematische Charakterisierung solcher Entwicklungen. Für offene Quantensysteme
wird die Zeitentwicklung durch dynamische Halbgruppen beschrieben. Ist die Halb-
gruppe gleichmäßig stetig, so ist ihr Erzeuger ein beschränkter Operator in der be-
kannten GKLS-Form, die von V. Gorini, A. Kossakowski, G. Sudarshan und, unab-
hängig davon, G. Lindblad entwickelt wurde. Aber die Charakterisierung von nur
stark-stetigen quantendynamischen Halbgruppen ist ein noch offenes Problem.
Im ersten Teil dieser Arbeit führen wir eine Standardform für die Erzeuger quan-
tendynamischer Halbgruppen ein, die eine unbeschränkte Version der bekannten
GKLS-Form ist. Grundlage dieser Standardform sind sogenannte No-Event Halb-
gruppen, die eine Evolution des Quantensystem beschreiben, bei der reine Zustän-
de auf Vielfache von reinen Zuständen abgebildet werden, und vollständig positive
Störungen ihres Erzeugers, die Sprünge in dieser Entwicklung beschreiben, wie Ab-
sorption durch Messapparate. Wir geben Beispiele von Standardhalbgruppen, die in
erster Ordnung (also bei Betrachtung des Erzeugers auf dem zum endlichen Rang ge-
hörenden Definitionsbereich) wahrscheinlichkeitserhaltend sind, aber nicht bei der
Betrachtung endlicher Zeiten. Zusätzlich konstruieren wir Beispiele von Erzeugern,
die nicht von Standardform sind, indem wir die vorherigen Beispiele modifizieren.
Im zweiten Teil setzen wir die Standardform-Eigenschaft mit der von W. Arveson ge-
fundenen Klassifikation von Endomorphismus-Halbgruppen in Verbindung. Er un-
terteilte sie in drei Klassen, Typ I, Typ II und Typ III. Wir zeigen, dass eine konservati-
ve dynamische Halbgruppe genau dann standard ist, wenn die minimale Dilatation
ihrer Adjungierten Typ I ist. Wichtigster Bestandteil des Beweises ist die Menge an
Ketbras im Definitionsbereich des No-Event-Erzeugers und ob diese einen definie-
renden Bereich für den Standarderzeuger bilden. Mit dieser Kenntnis schlagen wir
eine Ausweitung der Klassifikation auf (nicht notwendigerweise konservative) Halb-
gruppen vor, die entweder standard sind oder durch eine Reihe an vollständig posi-
tiven Störungen aus einer No-Event-Halbgruppe konstruiert werden können. Durch
diese Konstruktion sind sie immer vom Typ I oder vom Typ II.

Zitieren

Unbounded generators of dynamical semigroups. / Siemon, Inken.
Hannover, 2024. 80 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Siemon, I 2024, 'Unbounded generators of dynamical semigroups', Doctor rerum naturalium, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/15855
Siemon, I. (2024). Unbounded generators of dynamical semigroups. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/15855
Siemon I. Unbounded generators of dynamical semigroups. Hannover, 2024. 80 S. doi: 10.15488/15855
Siemon, Inken. / Unbounded generators of dynamical semigroups. Hannover, 2024. 80 S.
Download
@phdthesis{c196724f788c4b8f97303043cd8f5478,
title = "Unbounded generators of dynamical semigroups",
abstract = "The time evolution of a closed quantum system was described quite early in the history of quantum physics. These dynamics are reversible, and the time evolution is implemented by a continuous unitary group, which is in turn generated by a selfadjoint Hamiltonian operator. So, we have a complete mathematical characterization of all such evolutions. For open quantum systems the time evolution is given by dynamical semigroups. In the case of uniform continuity the generator of the dynamical semigroup is a bounded operator in the famous GKLS-form that has been found by V. Gorini, A. Kossakowski, G. Sudarshan and, independently, G. Lindblad. But the problem of characterizing also the merely strongly continuous dynamical semigroups or, equivalently, their unbounded generators, is open. In the first part of this thesis we introduce a standard formfor the generator of quantum dynamical semigroups that is an unbounded version of the GKLS-form. The basis of the standard form are so-called no-event semigroups, describing an evolution of a quantum system, that maps pure states to multiples of pure states, and completely positive perturbations of their generator that correspond to jumps in this evolution, like absorption by a measurement device. We will give examples of standard semigroups, which appear to be probability preserving to first order (i.e., when looking only at the generator on the finite-rank part of its domain) but not for finite times. Additionally, we construct examples of generators not of standard form by modifying the previous examples. In the second part we relate the notion of standardness toW. Arveson{\textquoteright}s classification of endomorphism semigroups. He divided them into three classes, Type I, Type II and Type III. We show that a conservative dynamical semigroup is standard if and only if the minimal dilation of its adjoint is of Type I. The key feature is the set of ketbras in the domain of the no-event generator and whether it is a core for the standard generator. With this knowledge, we suggest to extend this classification to (not necessarily conservative) semigroups that are standard or can be constructed as a series of completely positive perturbations of a no-event semigroup. By construction these are either of Type I or Type II.",
author = "Inken Siemon",
year = "2024",
doi = "10.15488/15855",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Unbounded generators of dynamical semigroups

AU - Siemon, Inken

PY - 2024

Y1 - 2024

N2 - The time evolution of a closed quantum system was described quite early in the history of quantum physics. These dynamics are reversible, and the time evolution is implemented by a continuous unitary group, which is in turn generated by a selfadjoint Hamiltonian operator. So, we have a complete mathematical characterization of all such evolutions. For open quantum systems the time evolution is given by dynamical semigroups. In the case of uniform continuity the generator of the dynamical semigroup is a bounded operator in the famous GKLS-form that has been found by V. Gorini, A. Kossakowski, G. Sudarshan and, independently, G. Lindblad. But the problem of characterizing also the merely strongly continuous dynamical semigroups or, equivalently, their unbounded generators, is open. In the first part of this thesis we introduce a standard formfor the generator of quantum dynamical semigroups that is an unbounded version of the GKLS-form. The basis of the standard form are so-called no-event semigroups, describing an evolution of a quantum system, that maps pure states to multiples of pure states, and completely positive perturbations of their generator that correspond to jumps in this evolution, like absorption by a measurement device. We will give examples of standard semigroups, which appear to be probability preserving to first order (i.e., when looking only at the generator on the finite-rank part of its domain) but not for finite times. Additionally, we construct examples of generators not of standard form by modifying the previous examples. In the second part we relate the notion of standardness toW. Arveson’s classification of endomorphism semigroups. He divided them into three classes, Type I, Type II and Type III. We show that a conservative dynamical semigroup is standard if and only if the minimal dilation of its adjoint is of Type I. The key feature is the set of ketbras in the domain of the no-event generator and whether it is a core for the standard generator. With this knowledge, we suggest to extend this classification to (not necessarily conservative) semigroups that are standard or can be constructed as a series of completely positive perturbations of a no-event semigroup. By construction these are either of Type I or Type II.

AB - The time evolution of a closed quantum system was described quite early in the history of quantum physics. These dynamics are reversible, and the time evolution is implemented by a continuous unitary group, which is in turn generated by a selfadjoint Hamiltonian operator. So, we have a complete mathematical characterization of all such evolutions. For open quantum systems the time evolution is given by dynamical semigroups. In the case of uniform continuity the generator of the dynamical semigroup is a bounded operator in the famous GKLS-form that has been found by V. Gorini, A. Kossakowski, G. Sudarshan and, independently, G. Lindblad. But the problem of characterizing also the merely strongly continuous dynamical semigroups or, equivalently, their unbounded generators, is open. In the first part of this thesis we introduce a standard formfor the generator of quantum dynamical semigroups that is an unbounded version of the GKLS-form. The basis of the standard form are so-called no-event semigroups, describing an evolution of a quantum system, that maps pure states to multiples of pure states, and completely positive perturbations of their generator that correspond to jumps in this evolution, like absorption by a measurement device. We will give examples of standard semigroups, which appear to be probability preserving to first order (i.e., when looking only at the generator on the finite-rank part of its domain) but not for finite times. Additionally, we construct examples of generators not of standard form by modifying the previous examples. In the second part we relate the notion of standardness toW. Arveson’s classification of endomorphism semigroups. He divided them into three classes, Type I, Type II and Type III. We show that a conservative dynamical semigroup is standard if and only if the minimal dilation of its adjoint is of Type I. The key feature is the set of ketbras in the domain of the no-event generator and whether it is a core for the standard generator. With this knowledge, we suggest to extend this classification to (not necessarily conservative) semigroups that are standard or can be constructed as a series of completely positive perturbations of a no-event semigroup. By construction these are either of Type I or Type II.

U2 - 10.15488/15855

DO - 10.15488/15855

M3 - Doctoral thesis

CY - Hannover

ER -

Von denselben Autoren