Time-transgressive tunnel-valley infill revealed by a three-dimensional sedimentary model, Hamburg, north-west Germany

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Adriaan Janszen
  • Julien Moreau
  • Andrea Moscariello
  • Jürgen Ehlers
  • Jens Kröger

Externe Organisationen

  • Delft University of Technology
  • Københavns Universitet
  • Universität Genf
  • Geologisches Landesamt
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)693-719
Seitenumfang27
FachzeitschriftSEDIMENTOLOGY
Jahrgang60
Ausgabenummer3
Frühes Online-Datum18 März 2013
PublikationsstatusVeröffentlicht - Apr. 2013
Extern publiziertJa

Abstract

Deep, elongated incisions, often referred to as tunnel valleys, are among the most characteristic landforms of formerly glaciated terrains. It is commonly thought that tunnel valleys were formed by meltwater flowing underneath large ice sheets. The sedimentary infill of these features is often highly intricate and therefore difficult to predict. This study intends to improve the comprehension of the sedimentology and to establish a conceptual model of tunnel-valley infill, which can be used as a predictive tool. To this end, the densely sampled, Pleistocene tunnel valleys in Hamburg (north-west Germany) were investigated using a dataset of 1057 deep wells containing lithological and geophysical data. The stratigraphic correlations and the resulting three-dimensional lithological model were used to assess the spatial lithological distributions and sedimentary architecture. The sedimentary succession filling the Hamburg area tunnel valleys can be subdivided into three distinct units, which are distinguished by their inferred depositional proximity to the ice margin. The overall trend of the succession shows a progressive decrease in transport energy and glacial influence through time. The rate of glacial recession appears to have been an important control on the sedimentary architecture of the tunnel-valley fill. During periods of stagnation, thick ice-proximal deposits accumulated at the ice margin, while during rapid recession, only a thin veneer of such coarse-grained sediments was deposited. Ice-distal and non-glaciogenic deposits (i.e. lacustrine, marine and terrestrial) fill the remaining part of the incision. The infill architecture suggests formation and subsequent infill of the tunnel valleys at the outer margin of the Elsterian ice sheet during its punctuated northwards recession. The proposed model shows how the history of ice-sheet recession determines the position of coarse-grained depocentres, while the post-glacial history controls the deposition of fines through a progressive infill of remnant depressions.

ASJC Scopus Sachgebiete

Ziele für nachhaltige Entwicklung

Zitieren

Time-transgressive tunnel-valley infill revealed by a three-dimensional sedimentary model, Hamburg, north-west Germany. / Janszen, Adriaan; Moreau, Julien; Moscariello, Andrea et al.
in: SEDIMENTOLOGY, Jahrgang 60, Nr. 3, 04.2013, S. 693-719.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Janszen A, Moreau J, Moscariello A, Ehlers J, Kröger J. Time-transgressive tunnel-valley infill revealed by a three-dimensional sedimentary model, Hamburg, north-west Germany. SEDIMENTOLOGY. 2013 Apr;60(3):693-719. Epub 2013 Mär 18. doi: 10.1111/j.1365-3091.2012.01357.x
Janszen, Adriaan ; Moreau, Julien ; Moscariello, Andrea et al. / Time-transgressive tunnel-valley infill revealed by a three-dimensional sedimentary model, Hamburg, north-west Germany. in: SEDIMENTOLOGY. 2013 ; Jahrgang 60, Nr. 3. S. 693-719.
Download
@article{f772dee65935422dab050d767b1af59b,
title = "Time-transgressive tunnel-valley infill revealed by a three-dimensional sedimentary model, Hamburg, north-west Germany",
abstract = "Deep, elongated incisions, often referred to as tunnel valleys, are among the most characteristic landforms of formerly glaciated terrains. It is commonly thought that tunnel valleys were formed by meltwater flowing underneath large ice sheets. The sedimentary infill of these features is often highly intricate and therefore difficult to predict. This study intends to improve the comprehension of the sedimentology and to establish a conceptual model of tunnel-valley infill, which can be used as a predictive tool. To this end, the densely sampled, Pleistocene tunnel valleys in Hamburg (north-west Germany) were investigated using a dataset of 1057 deep wells containing lithological and geophysical data. The stratigraphic correlations and the resulting three-dimensional lithological model were used to assess the spatial lithological distributions and sedimentary architecture. The sedimentary succession filling the Hamburg area tunnel valleys can be subdivided into three distinct units, which are distinguished by their inferred depositional proximity to the ice margin. The overall trend of the succession shows a progressive decrease in transport energy and glacial influence through time. The rate of glacial recession appears to have been an important control on the sedimentary architecture of the tunnel-valley fill. During periods of stagnation, thick ice-proximal deposits accumulated at the ice margin, while during rapid recession, only a thin veneer of such coarse-grained sediments was deposited. Ice-distal and non-glaciogenic deposits (i.e. lacustrine, marine and terrestrial) fill the remaining part of the incision. The infill architecture suggests formation and subsequent infill of the tunnel valleys at the outer margin of the Elsterian ice sheet during its punctuated northwards recession. The proposed model shows how the history of ice-sheet recession determines the position of coarse-grained depocentres, while the post-glacial history controls the deposition of fines through a progressive infill of remnant depressions.",
keywords = "Elsterian, Glacial erosion, Glacial sediments, Holsteinian, Ice margin, Subglacial drainage",
author = "Adriaan Janszen and Julien Moreau and Andrea Moscariello and J{\"u}rgen Ehlers and Jens Kr{\"o}ger",
year = "2013",
month = apr,
doi = "10.1111/j.1365-3091.2012.01357.x",
language = "English",
volume = "60",
pages = "693--719",
journal = "SEDIMENTOLOGY",
issn = "0037-0746",
publisher = "Wiley-Blackwell Publishing Ltd",
number = "3",

}

Download

TY - JOUR

T1 - Time-transgressive tunnel-valley infill revealed by a three-dimensional sedimentary model, Hamburg, north-west Germany

AU - Janszen, Adriaan

AU - Moreau, Julien

AU - Moscariello, Andrea

AU - Ehlers, Jürgen

AU - Kröger, Jens

PY - 2013/4

Y1 - 2013/4

N2 - Deep, elongated incisions, often referred to as tunnel valleys, are among the most characteristic landforms of formerly glaciated terrains. It is commonly thought that tunnel valleys were formed by meltwater flowing underneath large ice sheets. The sedimentary infill of these features is often highly intricate and therefore difficult to predict. This study intends to improve the comprehension of the sedimentology and to establish a conceptual model of tunnel-valley infill, which can be used as a predictive tool. To this end, the densely sampled, Pleistocene tunnel valleys in Hamburg (north-west Germany) were investigated using a dataset of 1057 deep wells containing lithological and geophysical data. The stratigraphic correlations and the resulting three-dimensional lithological model were used to assess the spatial lithological distributions and sedimentary architecture. The sedimentary succession filling the Hamburg area tunnel valleys can be subdivided into three distinct units, which are distinguished by their inferred depositional proximity to the ice margin. The overall trend of the succession shows a progressive decrease in transport energy and glacial influence through time. The rate of glacial recession appears to have been an important control on the sedimentary architecture of the tunnel-valley fill. During periods of stagnation, thick ice-proximal deposits accumulated at the ice margin, while during rapid recession, only a thin veneer of such coarse-grained sediments was deposited. Ice-distal and non-glaciogenic deposits (i.e. lacustrine, marine and terrestrial) fill the remaining part of the incision. The infill architecture suggests formation and subsequent infill of the tunnel valleys at the outer margin of the Elsterian ice sheet during its punctuated northwards recession. The proposed model shows how the history of ice-sheet recession determines the position of coarse-grained depocentres, while the post-glacial history controls the deposition of fines through a progressive infill of remnant depressions.

AB - Deep, elongated incisions, often referred to as tunnel valleys, are among the most characteristic landforms of formerly glaciated terrains. It is commonly thought that tunnel valleys were formed by meltwater flowing underneath large ice sheets. The sedimentary infill of these features is often highly intricate and therefore difficult to predict. This study intends to improve the comprehension of the sedimentology and to establish a conceptual model of tunnel-valley infill, which can be used as a predictive tool. To this end, the densely sampled, Pleistocene tunnel valleys in Hamburg (north-west Germany) were investigated using a dataset of 1057 deep wells containing lithological and geophysical data. The stratigraphic correlations and the resulting three-dimensional lithological model were used to assess the spatial lithological distributions and sedimentary architecture. The sedimentary succession filling the Hamburg area tunnel valleys can be subdivided into three distinct units, which are distinguished by their inferred depositional proximity to the ice margin. The overall trend of the succession shows a progressive decrease in transport energy and glacial influence through time. The rate of glacial recession appears to have been an important control on the sedimentary architecture of the tunnel-valley fill. During periods of stagnation, thick ice-proximal deposits accumulated at the ice margin, while during rapid recession, only a thin veneer of such coarse-grained sediments was deposited. Ice-distal and non-glaciogenic deposits (i.e. lacustrine, marine and terrestrial) fill the remaining part of the incision. The infill architecture suggests formation and subsequent infill of the tunnel valleys at the outer margin of the Elsterian ice sheet during its punctuated northwards recession. The proposed model shows how the history of ice-sheet recession determines the position of coarse-grained depocentres, while the post-glacial history controls the deposition of fines through a progressive infill of remnant depressions.

KW - Elsterian

KW - Glacial erosion

KW - Glacial sediments

KW - Holsteinian

KW - Ice margin

KW - Subglacial drainage

UR - http://www.scopus.com/inward/record.url?scp=84875252374&partnerID=8YFLogxK

U2 - 10.1111/j.1365-3091.2012.01357.x

DO - 10.1111/j.1365-3091.2012.01357.x

M3 - Article

AN - SCOPUS:84875252374

VL - 60

SP - 693

EP - 719

JO - SEDIMENTOLOGY

JF - SEDIMENTOLOGY

SN - 0037-0746

IS - 3

ER -