Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 12 |
Seitenumfang | 25 |
Fachzeitschrift | Hydrology |
Jahrgang | 8 |
Ausgabenummer | 1 |
Frühes Online-Datum | 20 Jan. 2021 |
Publikationsstatus | Veröffentlicht - März 2021 |
Abstract
In increasingly expanding cities, roofs are still largely unused areas to counteract the neg-ative impacts of urbanization on the water balance and to reduce flooding. To estimate the effect of green roofs as a sustainable low impact development (LID) technique on the building scale, different approaches to predict the runoff are carried out. In hydrological modelling, representing vegetation feedback on evapotranspiration (ET) is still considered challenging. In this research article, the focus is on improving the representation of the coupled soil–vegetation system of green roofs. Relevant data to calibrate and validate model representations were obtained from an existing field campaign comprising several green roof test plots with different characteristics. A coupled model, utilizing both the Penman–Monteith equation to estimate ET and the software EPA stormwater management model (SWMM) to calculate the runoff, was set up. Through the application of an automatic calibration procedure, we demonstrate that this coupled modelling approach (Kling–Gupta efficiency KGE = 0.88) outperforms the standard ET representation in EPA SWMM (KGE = −0.35), whilst providing a consistent and robust parameter set across all green roof configurations. Moreover, through a global sensitivity analysis, the impact of changes in model parameters was quantified in order to aid modelers in simplifying their parameterization of EPA SWMM. Finally, an improved model using the Penman–Monteith equation and various recommendations are presented.
ASJC Scopus Sachgebiete
- Erdkunde und Planetologie (insg.)
- Ozeanographie
- Umweltwissenschaften (insg.)
- Gewässerkunde und -technologie
- Umweltwissenschaften (insg.)
- Abfallwirtschaft und -entsorgung
- Erdkunde und Planetologie (insg.)
- Erdoberflächenprozesse
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Hydrology, Jahrgang 8, Nr. 1, 12, 03.2021.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Robust vegetation parameterization for green roofs in the epa stormwater management model (SWMM)
AU - Iffland, Ronja
AU - Förster, Kristian
AU - Westerholt, Daniel
AU - Pesci, María Herminia
AU - Lösken, Gilbert
PY - 2021/3
Y1 - 2021/3
N2 - In increasingly expanding cities, roofs are still largely unused areas to counteract the neg-ative impacts of urbanization on the water balance and to reduce flooding. To estimate the effect of green roofs as a sustainable low impact development (LID) technique on the building scale, different approaches to predict the runoff are carried out. In hydrological modelling, representing vegetation feedback on evapotranspiration (ET) is still considered challenging. In this research article, the focus is on improving the representation of the coupled soil–vegetation system of green roofs. Relevant data to calibrate and validate model representations were obtained from an existing field campaign comprising several green roof test plots with different characteristics. A coupled model, utilizing both the Penman–Monteith equation to estimate ET and the software EPA stormwater management model (SWMM) to calculate the runoff, was set up. Through the application of an automatic calibration procedure, we demonstrate that this coupled modelling approach (Kling–Gupta efficiency KGE = 0.88) outperforms the standard ET representation in EPA SWMM (KGE = −0.35), whilst providing a consistent and robust parameter set across all green roof configurations. Moreover, through a global sensitivity analysis, the impact of changes in model parameters was quantified in order to aid modelers in simplifying their parameterization of EPA SWMM. Finally, an improved model using the Penman–Monteith equation and various recommendations are presented.
AB - In increasingly expanding cities, roofs are still largely unused areas to counteract the neg-ative impacts of urbanization on the water balance and to reduce flooding. To estimate the effect of green roofs as a sustainable low impact development (LID) technique on the building scale, different approaches to predict the runoff are carried out. In hydrological modelling, representing vegetation feedback on evapotranspiration (ET) is still considered challenging. In this research article, the focus is on improving the representation of the coupled soil–vegetation system of green roofs. Relevant data to calibrate and validate model representations were obtained from an existing field campaign comprising several green roof test plots with different characteristics. A coupled model, utilizing both the Penman–Monteith equation to estimate ET and the software EPA stormwater management model (SWMM) to calculate the runoff, was set up. Through the application of an automatic calibration procedure, we demonstrate that this coupled modelling approach (Kling–Gupta efficiency KGE = 0.88) outperforms the standard ET representation in EPA SWMM (KGE = −0.35), whilst providing a consistent and robust parameter set across all green roof configurations. Moreover, through a global sensitivity analysis, the impact of changes in model parameters was quantified in order to aid modelers in simplifying their parameterization of EPA SWMM. Finally, an improved model using the Penman–Monteith equation and various recommendations are presented.
KW - EPA SWMM
KW - Green roof
KW - Parameter optimization
KW - Penman–Monteith
KW - Runoff
KW - Sedum
UR - http://www.scopus.com/inward/record.url?scp=85099965230&partnerID=8YFLogxK
U2 - 10.3390/hydrology8010012
DO - 10.3390/hydrology8010012
M3 - Article
AN - SCOPUS:85099965230
VL - 8
JO - Hydrology
JF - Hydrology
IS - 1
M1 - 12
ER -