Reference electrodes in proton exchange membrane water electrolysis characterization: experimental investigation of oxygen and hydrogen evolution reaction kinetics

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autorschaft

  • Lena Viviane Bühre
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoktor der Ingenieurwissenschaften
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades19 Juni 2024
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 18 Juli 2024

Abstract

Die Erzeugung von grünem Wasserstoff durch Waserelektrolyse unter Einsatz erneuerbarer Energien bietet vielversprechende Möglichkeiten, verschiedene Sektoren zu dekarbonisieren und fluktuierende erneuerbare Energien in den Energiemix zu integrieren. Die großtechnische Erzeugung von grünem Wasserstoff steht jedoch vor Herausforderungen, vor allem aufgrund der hohen Anfangsinvestitionen. Als Beitrag zur Bewältigung dieser Herausforderung befasst sich diese Dissertation mit der Senkung der Kosten für die Wasserstofferzeugung durch eine verbesserte Charakterisierung der Katalysatorschichten in PEM Wasserelektrolyseuren. Die Charakterisierung der Katalysatorschichten ist wichtig, denn eine verbesserte kinetische Effizienz und Beständigkeit tragen dazu bei, die Kosten zu senken, die mit mit den teuren und knappen Katalysatormaterialien verbunden sind. Die derzeitigen Charakterisierungswerkzeuge bieten nur begrenzt realistische Einblicke in die Performance der Katalysatorschicht auf Gesamtzellebene. Um diese Lücke zu schließen, untersucht die vorliegende Dissertation die Anwendung von Referenzelektroden als erweitertes Charakterisierungswerkzeug für die PEM-Wasserelektrolyse. Referenzelektroden ermöglichen die Messung des Ionenpotentials innerhalb der Zelle und bieten so einen Einblick in das System. Auf diese Weise kann das Betriebsverhalten der Katalysatorschicht an beiden Elektroden individuell untersucht werden und Degradationserscheinungen können besser erkannt werden. Zunächst wird die Integration von zwei Referenzelektrodenkonzepten in standardisierte Testzellen erläutert und mit experimentellen Untersuchungen begleitet. Es handelt sich dabei um eine Salzbrücken-Referenzelektrode und eine reversible Wasserstoff-Elektrode. In beiden Fällen ergeben sich bei den Versuchsaufbauten Herausforderungen, wie beispielsweise Auswirkungen der Referenzelektroden auf den regulären Betrieb der Zelle. Am Ende der Dissertation stehen die beiden Versuchsaufbauten als vielseitige Charakterisierungswerkzeuge zur Untersuchung der verschiedenen Verlustbeiträge in PEM Wasserelektrolysezellen zu Verfügung. Die erste Anwendung der Versuchsaufbauten ist die separate Charakterisierung der Reaktionskinetiken der Sauerstoff- und Wasserstoffentwicklung. Für beide Reaktionen werden die kinetischen Parameter Tafel-Steigung und Austauschstromdichte bestimmt. Anschließend wird die Beziehung zwischen Temperatur und Austauschstromdichte untersucht, um die Aktivierungsenergien für Sauerstoff- und Wasserstoffentwicklungsreaktionen zu ermitteln. Diese stellen wichtige Indikatoren für die Katalysatorentwicklung und die Modellierung dar. Als abschließende Anwendung wird ein beschleunigter Alterungstest durchgeführt. Dabei zeigt sich ein Anstieg der Aktivierungsüberspannung über den Versuchszeitraum. Dieser kann auf Veränderungen in der kathodischen Katalysatorschicht zurückgeführt werden.

Ziele für nachhaltige Entwicklung

Zitieren

Reference electrodes in proton exchange membrane water electrolysis characterization: experimental investigation of oxygen and hydrogen evolution reaction kinetics. / Bühre, Lena Viviane.
Hannover, 2024. 176 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Download
@phdthesis{1c2c130a6d234ae7952548069bc9dbf5,
title = "Reference electrodes in proton exchange membrane water electrolysis characterization: experimental investigation of oxygen and hydrogen evolution reaction kinetics",
abstract = "Producing clean hydrogen through water electrolysis powered by renewable energy presents an opportunity to reduce carbon emissions across various industries. Additionally, it helps to integrate fluctuating renewables into the energy mix. However, the large-scale production of green hydrogen faces significant challenges, mainly due to high initial investments. To address this challenge, this dissertation focuses on reducing the cost of hydrogen production by improving the characterization of catalyst layers in proton exchange membrane (PEM) water electrolyzers. Characterizing catalyst layers is essential, as their improved kinetic efficiency and durability will help reduce the costs associated with expensive and scarce catalyst materials. Current state-of-the-art characterization methods are limited in providing realistic insights into catalyst layer performance at the full cell level. To bridge this gap, the dissertation investigates the application of reference electrodes as an advanced characterization tool for PEM water electrolysis. Reference electrodes offer insight into the system by enabling the measurement of ionic potential within the cell. This measurement allows for the individual investigation of the catalyst layer performance at each electrode and helps to detect degradation phenomena. The experimental studies conducted in this dissertation demonstrate the integration of two specific reference electrodes, namely a salt bridge reference electrode and a reversible hydrogen electrode, into a standardized test cell. Both setups present unique challenges, such as ensuring regular cell operation. Ultimately, these efforts lead to the design of versatile characterization tools capable of investigating the various loss contributions in PEM water electrolysis. The first application of the setups is the separate characterization of oxygen and hydrogen evolution reaction kinetics. Kinetic parameters, including Tafel slopes and exchange current densities, are determined for both reactions. Continuing with the application of the setups, the relationship between temperature and exchange current density is explored to calculate the activation energies for oxygen and hydrogen evolution reactions. This analysis provides valuable metrics for catalyst development and modeling purposes. As the concluding application, an accelerated stress test is performed. It reveals an increase in activation overpotential over time. The observed degradation can be traced back to changes in the cathodic catalyst layer.",
author = "B{\"u}hre, {Lena Viviane}",
year = "2024",
month = jul,
day = "18",
doi = "10.15488/17804",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Reference electrodes in proton exchange membrane water electrolysis characterization

T2 - experimental investigation of oxygen and hydrogen evolution reaction kinetics

AU - Bühre, Lena Viviane

PY - 2024/7/18

Y1 - 2024/7/18

N2 - Producing clean hydrogen through water electrolysis powered by renewable energy presents an opportunity to reduce carbon emissions across various industries. Additionally, it helps to integrate fluctuating renewables into the energy mix. However, the large-scale production of green hydrogen faces significant challenges, mainly due to high initial investments. To address this challenge, this dissertation focuses on reducing the cost of hydrogen production by improving the characterization of catalyst layers in proton exchange membrane (PEM) water electrolyzers. Characterizing catalyst layers is essential, as their improved kinetic efficiency and durability will help reduce the costs associated with expensive and scarce catalyst materials. Current state-of-the-art characterization methods are limited in providing realistic insights into catalyst layer performance at the full cell level. To bridge this gap, the dissertation investigates the application of reference electrodes as an advanced characterization tool for PEM water electrolysis. Reference electrodes offer insight into the system by enabling the measurement of ionic potential within the cell. This measurement allows for the individual investigation of the catalyst layer performance at each electrode and helps to detect degradation phenomena. The experimental studies conducted in this dissertation demonstrate the integration of two specific reference electrodes, namely a salt bridge reference electrode and a reversible hydrogen electrode, into a standardized test cell. Both setups present unique challenges, such as ensuring regular cell operation. Ultimately, these efforts lead to the design of versatile characterization tools capable of investigating the various loss contributions in PEM water electrolysis. The first application of the setups is the separate characterization of oxygen and hydrogen evolution reaction kinetics. Kinetic parameters, including Tafel slopes and exchange current densities, are determined for both reactions. Continuing with the application of the setups, the relationship between temperature and exchange current density is explored to calculate the activation energies for oxygen and hydrogen evolution reactions. This analysis provides valuable metrics for catalyst development and modeling purposes. As the concluding application, an accelerated stress test is performed. It reveals an increase in activation overpotential over time. The observed degradation can be traced back to changes in the cathodic catalyst layer.

AB - Producing clean hydrogen through water electrolysis powered by renewable energy presents an opportunity to reduce carbon emissions across various industries. Additionally, it helps to integrate fluctuating renewables into the energy mix. However, the large-scale production of green hydrogen faces significant challenges, mainly due to high initial investments. To address this challenge, this dissertation focuses on reducing the cost of hydrogen production by improving the characterization of catalyst layers in proton exchange membrane (PEM) water electrolyzers. Characterizing catalyst layers is essential, as their improved kinetic efficiency and durability will help reduce the costs associated with expensive and scarce catalyst materials. Current state-of-the-art characterization methods are limited in providing realistic insights into catalyst layer performance at the full cell level. To bridge this gap, the dissertation investigates the application of reference electrodes as an advanced characterization tool for PEM water electrolysis. Reference electrodes offer insight into the system by enabling the measurement of ionic potential within the cell. This measurement allows for the individual investigation of the catalyst layer performance at each electrode and helps to detect degradation phenomena. The experimental studies conducted in this dissertation demonstrate the integration of two specific reference electrodes, namely a salt bridge reference electrode and a reversible hydrogen electrode, into a standardized test cell. Both setups present unique challenges, such as ensuring regular cell operation. Ultimately, these efforts lead to the design of versatile characterization tools capable of investigating the various loss contributions in PEM water electrolysis. The first application of the setups is the separate characterization of oxygen and hydrogen evolution reaction kinetics. Kinetic parameters, including Tafel slopes and exchange current densities, are determined for both reactions. Continuing with the application of the setups, the relationship between temperature and exchange current density is explored to calculate the activation energies for oxygen and hydrogen evolution reactions. This analysis provides valuable metrics for catalyst development and modeling purposes. As the concluding application, an accelerated stress test is performed. It reveals an increase in activation overpotential over time. The observed degradation can be traced back to changes in the cathodic catalyst layer.

U2 - 10.15488/17804

DO - 10.15488/17804

M3 - Doctoral thesis

CY - Hannover

ER -

Von denselben Autoren