Poly(glycidyl ether)-Based Monolayers on Gold Surfaces: Control of Grafting Density and Chain Conformation by Grafting Procedure, Surface Anchor, and Molecular Weight

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

Externe Organisationen

  • Freie Universität Berlin (FU Berlin)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)2076-2086
Seitenumfang11
FachzeitschriftLANGMUIR
Jahrgang33
Ausgabenummer9
Frühes Online-Datum21 Feb. 2017
PublikationsstatusVeröffentlicht - 7 März 2017
Extern publiziertJa

Abstract

For a meaningful correlation of surface coatings with their respective biological response reproducible coating procedures, well-defined surface coatings, and thorough surface characterization with respect to layer thickness and grafting density are indispensable. The same applies to polymeric monolayer coatings which are intended to be used for, e.g., fundamental studies on the volume phase transition of surface end-tethered thermoresponsive polymer chains. Planar gold surfaces are frequently used as model substrates, since they allow a variety of straightforward surface characterization methods. Herein we present reproducible grafting-to procedures performed with thermoresponsive poly(glycidyl ether) copolymers composed of glycidyl methyl ether (GME) and ethyl glycidyl ether (EGE). The copolymers feature different molecular weights (2 kDa, 9 kDa, 24 kDa) and are equipped with varying sulfur-containing anchor groups in order to achieve adjustable grafting densities on gold surfaces and hence control the tethered polymers' chain conformation. We determined "wet" and "dry" thicknesses of these coatings by QCM-D and ellipsometry measurements and deduced anchor distances and degrees of chain overlap of the polymer chains assembled on gold. Grafting under cloud point conditions allowed for higher degrees of chain overlap compared to grafting from a good solvent like ethanol, independent of the used sulfur-containing anchor group for polymers with low (2 kDa) and medium (9 kDa) molecular weights. By contrast, the achieved grafting densities and thus chain overlaps of surface-tethered polymers with high (24 kDa) molecular weights were identical for both grafting methods. Monolayers prepared from an ethanolic solution of poly(glycidyl ether)s equipped with sterically demanding disulfide-containing anchors revealed the lowest degrees of chain overlap. The ratio of the radius of gyration to the anchor distance (2 Rg/l) of the latter coating was found to be lower than 1.4, indicating that the assembly was rather in the mushroom-like than in the brush regime. Polymer chains with thiol-containing anchors of different alkyl chain lengths (C11SH vs C4SH) formed assemblies with comparable degrees of chain overlap with 2 Rg/l values above 1.4 and are thus in the brush regime. Molecular weights influenced the achievable degree of chain overlap on the surface. Coatings prepared with the medium molecular weight polymer (9 kDa) resulted in the highest chain packing density. Control of grafting density and thus chain overlap in different regimes (brush vs mushroom) on planar gold substrates are attainable for monolayer coatings with poly(GME-ran-EGE) by adjusting the polymer's molecular weight and anchor group as well as the conditions for the grafting-to procedure.

ASJC Scopus Sachgebiete

Zitieren

Poly(glycidyl ether)-Based Monolayers on Gold Surfaces: Control of Grafting Density and Chain Conformation by Grafting Procedure, Surface Anchor, and Molecular Weight. / Heinen, Silke; Weinhart, Marie.
in: LANGMUIR, Jahrgang 33, Nr. 9, 07.03.2017, S. 2076-2086.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{830dee2b220245c197b00b5f465564f7,
title = "Poly(glycidyl ether)-Based Monolayers on Gold Surfaces: Control of Grafting Density and Chain Conformation by Grafting Procedure, Surface Anchor, and Molecular Weight",
abstract = "For a meaningful correlation of surface coatings with their respective biological response reproducible coating procedures, well-defined surface coatings, and thorough surface characterization with respect to layer thickness and grafting density are indispensable. The same applies to polymeric monolayer coatings which are intended to be used for, e.g., fundamental studies on the volume phase transition of surface end-tethered thermoresponsive polymer chains. Planar gold surfaces are frequently used as model substrates, since they allow a variety of straightforward surface characterization methods. Herein we present reproducible grafting-to procedures performed with thermoresponsive poly(glycidyl ether) copolymers composed of glycidyl methyl ether (GME) and ethyl glycidyl ether (EGE). The copolymers feature different molecular weights (2 kDa, 9 kDa, 24 kDa) and are equipped with varying sulfur-containing anchor groups in order to achieve adjustable grafting densities on gold surfaces and hence control the tethered polymers' chain conformation. We determined {"}wet{"} and {"}dry{"} thicknesses of these coatings by QCM-D and ellipsometry measurements and deduced anchor distances and degrees of chain overlap of the polymer chains assembled on gold. Grafting under cloud point conditions allowed for higher degrees of chain overlap compared to grafting from a good solvent like ethanol, independent of the used sulfur-containing anchor group for polymers with low (2 kDa) and medium (9 kDa) molecular weights. By contrast, the achieved grafting densities and thus chain overlaps of surface-tethered polymers with high (24 kDa) molecular weights were identical for both grafting methods. Monolayers prepared from an ethanolic solution of poly(glycidyl ether)s equipped with sterically demanding disulfide-containing anchors revealed the lowest degrees of chain overlap. The ratio of the radius of gyration to the anchor distance (2 Rg/l) of the latter coating was found to be lower than 1.4, indicating that the assembly was rather in the mushroom-like than in the brush regime. Polymer chains with thiol-containing anchors of different alkyl chain lengths (C11SH vs C4SH) formed assemblies with comparable degrees of chain overlap with 2 Rg/l values above 1.4 and are thus in the brush regime. Molecular weights influenced the achievable degree of chain overlap on the surface. Coatings prepared with the medium molecular weight polymer (9 kDa) resulted in the highest chain packing density. Control of grafting density and thus chain overlap in different regimes (brush vs mushroom) on planar gold substrates are attainable for monolayer coatings with poly(GME-ran-EGE) by adjusting the polymer's molecular weight and anchor group as well as the conditions for the grafting-to procedure.",
author = "Silke Heinen and Marie Weinhart",
note = "Funding Information: S.H. kindly acknowledges the financial support of FCI through a Chemiefonds Scholarship, and M.W. is grateful to the BMBF for their support through Grant FKZ: 13N13523. Publisher Copyright: {\textcopyright} 2017 American Chemical Society.",
year = "2017",
month = mar,
day = "7",
doi = "10.1021/acs.langmuir.6b03927",
language = "English",
volume = "33",
pages = "2076--2086",
journal = "LANGMUIR",
issn = "0743-7463",
publisher = "American Chemical Society",
number = "9",

}

Download

TY - JOUR

T1 - Poly(glycidyl ether)-Based Monolayers on Gold Surfaces

T2 - Control of Grafting Density and Chain Conformation by Grafting Procedure, Surface Anchor, and Molecular Weight

AU - Heinen, Silke

AU - Weinhart, Marie

N1 - Funding Information: S.H. kindly acknowledges the financial support of FCI through a Chemiefonds Scholarship, and M.W. is grateful to the BMBF for their support through Grant FKZ: 13N13523. Publisher Copyright: © 2017 American Chemical Society.

PY - 2017/3/7

Y1 - 2017/3/7

N2 - For a meaningful correlation of surface coatings with their respective biological response reproducible coating procedures, well-defined surface coatings, and thorough surface characterization with respect to layer thickness and grafting density are indispensable. The same applies to polymeric monolayer coatings which are intended to be used for, e.g., fundamental studies on the volume phase transition of surface end-tethered thermoresponsive polymer chains. Planar gold surfaces are frequently used as model substrates, since they allow a variety of straightforward surface characterization methods. Herein we present reproducible grafting-to procedures performed with thermoresponsive poly(glycidyl ether) copolymers composed of glycidyl methyl ether (GME) and ethyl glycidyl ether (EGE). The copolymers feature different molecular weights (2 kDa, 9 kDa, 24 kDa) and are equipped with varying sulfur-containing anchor groups in order to achieve adjustable grafting densities on gold surfaces and hence control the tethered polymers' chain conformation. We determined "wet" and "dry" thicknesses of these coatings by QCM-D and ellipsometry measurements and deduced anchor distances and degrees of chain overlap of the polymer chains assembled on gold. Grafting under cloud point conditions allowed for higher degrees of chain overlap compared to grafting from a good solvent like ethanol, independent of the used sulfur-containing anchor group for polymers with low (2 kDa) and medium (9 kDa) molecular weights. By contrast, the achieved grafting densities and thus chain overlaps of surface-tethered polymers with high (24 kDa) molecular weights were identical for both grafting methods. Monolayers prepared from an ethanolic solution of poly(glycidyl ether)s equipped with sterically demanding disulfide-containing anchors revealed the lowest degrees of chain overlap. The ratio of the radius of gyration to the anchor distance (2 Rg/l) of the latter coating was found to be lower than 1.4, indicating that the assembly was rather in the mushroom-like than in the brush regime. Polymer chains with thiol-containing anchors of different alkyl chain lengths (C11SH vs C4SH) formed assemblies with comparable degrees of chain overlap with 2 Rg/l values above 1.4 and are thus in the brush regime. Molecular weights influenced the achievable degree of chain overlap on the surface. Coatings prepared with the medium molecular weight polymer (9 kDa) resulted in the highest chain packing density. Control of grafting density and thus chain overlap in different regimes (brush vs mushroom) on planar gold substrates are attainable for monolayer coatings with poly(GME-ran-EGE) by adjusting the polymer's molecular weight and anchor group as well as the conditions for the grafting-to procedure.

AB - For a meaningful correlation of surface coatings with their respective biological response reproducible coating procedures, well-defined surface coatings, and thorough surface characterization with respect to layer thickness and grafting density are indispensable. The same applies to polymeric monolayer coatings which are intended to be used for, e.g., fundamental studies on the volume phase transition of surface end-tethered thermoresponsive polymer chains. Planar gold surfaces are frequently used as model substrates, since they allow a variety of straightforward surface characterization methods. Herein we present reproducible grafting-to procedures performed with thermoresponsive poly(glycidyl ether) copolymers composed of glycidyl methyl ether (GME) and ethyl glycidyl ether (EGE). The copolymers feature different molecular weights (2 kDa, 9 kDa, 24 kDa) and are equipped with varying sulfur-containing anchor groups in order to achieve adjustable grafting densities on gold surfaces and hence control the tethered polymers' chain conformation. We determined "wet" and "dry" thicknesses of these coatings by QCM-D and ellipsometry measurements and deduced anchor distances and degrees of chain overlap of the polymer chains assembled on gold. Grafting under cloud point conditions allowed for higher degrees of chain overlap compared to grafting from a good solvent like ethanol, independent of the used sulfur-containing anchor group for polymers with low (2 kDa) and medium (9 kDa) molecular weights. By contrast, the achieved grafting densities and thus chain overlaps of surface-tethered polymers with high (24 kDa) molecular weights were identical for both grafting methods. Monolayers prepared from an ethanolic solution of poly(glycidyl ether)s equipped with sterically demanding disulfide-containing anchors revealed the lowest degrees of chain overlap. The ratio of the radius of gyration to the anchor distance (2 Rg/l) of the latter coating was found to be lower than 1.4, indicating that the assembly was rather in the mushroom-like than in the brush regime. Polymer chains with thiol-containing anchors of different alkyl chain lengths (C11SH vs C4SH) formed assemblies with comparable degrees of chain overlap with 2 Rg/l values above 1.4 and are thus in the brush regime. Molecular weights influenced the achievable degree of chain overlap on the surface. Coatings prepared with the medium molecular weight polymer (9 kDa) resulted in the highest chain packing density. Control of grafting density and thus chain overlap in different regimes (brush vs mushroom) on planar gold substrates are attainable for monolayer coatings with poly(GME-ran-EGE) by adjusting the polymer's molecular weight and anchor group as well as the conditions for the grafting-to procedure.

UR - http://www.scopus.com/inward/record.url?scp=85014747788&partnerID=8YFLogxK

U2 - 10.1021/acs.langmuir.6b03927

DO - 10.1021/acs.langmuir.6b03927

M3 - Article

C2 - 28191961

AN - SCOPUS:85014747788

VL - 33

SP - 2076

EP - 2086

JO - LANGMUIR

JF - LANGMUIR

SN - 0743-7463

IS - 9

ER -

Von denselben Autoren