Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 253-260 |
Seitenumfang | 8 |
Fachzeitschrift | ORDER |
Jahrgang | 10 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - Sept. 1993 |
Abstract
We show that Krull's Separation Lemma for arbitrary rings and a certain lattice-theoretical generalization of it are equivalent to the classical Prime Ideal Theorem for Boolean algebras. As an application, we derive the intersection theorem for Baer radicals from choice principles weaker than the Axiom of Choice. A central tool for our considerations are Scott-open m-filters in quantales.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Algebra und Zahlentheorie
- Mathematik (insg.)
- Geometrie und Topologie
- Informatik (insg.)
- Theoretische Informatik und Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: ORDER, Jahrgang 10, Nr. 3, 09.1993, S. 253-260.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - On Krull's Separation Lemma
AU - Banaschewski, Bernhard
AU - Erné, Marcel
PY - 1993/9
Y1 - 1993/9
N2 - We show that Krull's Separation Lemma for arbitrary rings and a certain lattice-theoretical generalization of it are equivalent to the classical Prime Ideal Theorem for Boolean algebras. As an application, we derive the intersection theorem for Baer radicals from choice principles weaker than the Axiom of Choice. A central tool for our considerations are Scott-open m-filters in quantales.
AB - We show that Krull's Separation Lemma for arbitrary rings and a certain lattice-theoretical generalization of it are equivalent to the classical Prime Ideal Theorem for Boolean algebras. As an application, we derive the intersection theorem for Baer radicals from choice principles weaker than the Axiom of Choice. A central tool for our considerations are Scott-open m-filters in quantales.
KW - m-filter
KW - Mathematics Subject Classifications (1991): 06A23, 06F05, 16D30
KW - prime element
KW - prime ideal
KW - quantale
KW - radical
KW - Ring
KW - Scott-open
UR - http://www.scopus.com/inward/record.url?scp=0042888351&partnerID=8YFLogxK
U2 - 10.1007/BF01110546
DO - 10.1007/BF01110546
M3 - Article
AN - SCOPUS:0042888351
VL - 10
SP - 253
EP - 260
JO - ORDER
JF - ORDER
SN - 0167-8094
IS - 3
ER -