On Krull's Separation Lemma

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Bernhard Banaschewski
  • Marcel Erné

Externe Organisationen

  • McMaster University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)253-260
Seitenumfang8
FachzeitschriftORDER
Jahrgang10
Ausgabenummer3
PublikationsstatusVeröffentlicht - Sept. 1993

Abstract

We show that Krull's Separation Lemma for arbitrary rings and a certain lattice-theoretical generalization of it are equivalent to the classical Prime Ideal Theorem for Boolean algebras. As an application, we derive the intersection theorem for Baer radicals from choice principles weaker than the Axiom of Choice. A central tool for our considerations are Scott-open m-filters in quantales.

ASJC Scopus Sachgebiete

Zitieren

On Krull's Separation Lemma. / Banaschewski, Bernhard; Erné, Marcel.
in: ORDER, Jahrgang 10, Nr. 3, 09.1993, S. 253-260.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Banaschewski, B & Erné, M 1993, 'On Krull's Separation Lemma', ORDER, Jg. 10, Nr. 3, S. 253-260. https://doi.org/10.1007/BF01110546
Banaschewski, B., & Erné, M. (1993). On Krull's Separation Lemma. ORDER, 10(3), 253-260. https://doi.org/10.1007/BF01110546
Banaschewski B, Erné M. On Krull's Separation Lemma. ORDER. 1993 Sep;10(3):253-260. doi: 10.1007/BF01110546
Banaschewski, Bernhard ; Erné, Marcel. / On Krull's Separation Lemma. in: ORDER. 1993 ; Jahrgang 10, Nr. 3. S. 253-260.
Download
@article{4bd050eeace34bab86911629556255ff,
title = "On Krull's Separation Lemma",
abstract = "We show that Krull's Separation Lemma for arbitrary rings and a certain lattice-theoretical generalization of it are equivalent to the classical Prime Ideal Theorem for Boolean algebras. As an application, we derive the intersection theorem for Baer radicals from choice principles weaker than the Axiom of Choice. A central tool for our considerations are Scott-open m-filters in quantales.",
keywords = "m-filter, Mathematics Subject Classifications (1991): 06A23, 06F05, 16D30, prime element, prime ideal, quantale, radical, Ring, Scott-open",
author = "Bernhard Banaschewski and Marcel Ern{\'e}",
year = "1993",
month = sep,
doi = "10.1007/BF01110546",
language = "English",
volume = "10",
pages = "253--260",
journal = "ORDER",
issn = "0167-8094",
publisher = "Springer Netherlands",
number = "3",

}

Download

TY - JOUR

T1 - On Krull's Separation Lemma

AU - Banaschewski, Bernhard

AU - Erné, Marcel

PY - 1993/9

Y1 - 1993/9

N2 - We show that Krull's Separation Lemma for arbitrary rings and a certain lattice-theoretical generalization of it are equivalent to the classical Prime Ideal Theorem for Boolean algebras. As an application, we derive the intersection theorem for Baer radicals from choice principles weaker than the Axiom of Choice. A central tool for our considerations are Scott-open m-filters in quantales.

AB - We show that Krull's Separation Lemma for arbitrary rings and a certain lattice-theoretical generalization of it are equivalent to the classical Prime Ideal Theorem for Boolean algebras. As an application, we derive the intersection theorem for Baer radicals from choice principles weaker than the Axiom of Choice. A central tool for our considerations are Scott-open m-filters in quantales.

KW - m-filter

KW - Mathematics Subject Classifications (1991): 06A23, 06F05, 16D30

KW - prime element

KW - prime ideal

KW - quantale

KW - radical

KW - Ring

KW - Scott-open

UR - http://www.scopus.com/inward/record.url?scp=0042888351&partnerID=8YFLogxK

U2 - 10.1007/BF01110546

DO - 10.1007/BF01110546

M3 - Article

AN - SCOPUS:0042888351

VL - 10

SP - 253

EP - 260

JO - ORDER

JF - ORDER

SN - 0167-8094

IS - 3

ER -