Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 75-86 |
Seitenumfang | 12 |
Fachzeitschrift | Soil and Tillage Research |
Jahrgang | 109 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - Aug. 2010 |
Extern publiziert | Ja |
Abstract
Overgrazing is a major cause of grassland degradation in semi-arid regions. To evaluate how soil water and heat fluxes respond to grazing, investigations on soil, plant and meteorological parameters were conducted at four sites with different grazing intensities through three growing periods (2004-2006) in a steppe ecosystem of Inner Mongolia. The grazing intensities were (1) ungrazed since 1979, (2) ungrazed since 1999, (3) moderately grazed, and (4) heavily grazed. In comparison to other treatments, heavy grazing had decreased total pore and macropores volumes. The impacts of these grazing-induced changes of soil pore structure on water and heat fluxes were simulated by the processed-based hydraulic model HYDRUS-1D. To account for the site-specific boundary condition, we partitioned evapotranspiration as a function of dynamic cover area index of green and dead plant materials, used the root growth model related with root length density, and estimated interception using the SHAW model. Furthermore, the uncertainty of soil hydraulic parameters on model results was evaluated using three simulation approaches: (i) laboratory-derived hydraulic properties (LDP), (ii) neural network (NN) analysis, and (iii) inverse optimization (Inverse). On the basis of previous calibrations, HYDRUS-1D was validated with a good agreement between modeled and measured soil moisture and temperature, which provided a basis to evaluate the grazing effects on water and energy balance. Of the three approaches used, the Inverse expressed the best simulation, and the LDP was better than the NN due to more precise reflection of soil structural functions. Model result showed that, due to the changed soil structure and soil surface coverage, grazing increased soil heat fluxes. There was no significant difference on water budget components between the two ungrazed sites and moderate grazing, while heavy grazing significantly decreased interception from 17 to 7. mm and transpiration from 121 to 74. mm, and increased evaporation from 88 to 128. mm. We conclude that intensive grazing in Inner Mongolia grassland deteriorated soil functions and reduced plant available water, and consequently reduced grassland productivity and enhanced the risks for wind and water erosion.
ASJC Scopus Sachgebiete
- Agrar- und Biowissenschaften (insg.)
- Agronomie und Nutzpflanzenwissenschaften
- Agrar- und Biowissenschaften (insg.)
- Bodenkunde
- Erdkunde und Planetologie (insg.)
- Erdoberflächenprozesse
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Soil and Tillage Research, Jahrgang 109, Nr. 2, 08.2010, S. 75-86.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Modeling grazing effects on coupled water and heat fluxes in Inner Mongolia grassland
AU - Zhao, Ying
AU - Peth, Stephan
AU - Horn, Rainer
AU - Krümmelbein, Julia
AU - Ketzer, Bettina
AU - Gao, Yingzhi
AU - Doerner, Jose
AU - Bernhofer, Christian
AU - Peng, Xinhua
N1 - Funding Information: Financial support was provided by the German Research Council (DFG) research grant DFG RU #536 MAGIM . Dr. Peng acknowledges the ‘Hundred Talent Programme, CAS’. We thank Prof. J. Šimůnek for help on the HYDRUS-1D code and Prof. G.N. Flerchinger for help on the SHAW code. The anonymous reviewers and Dr. Paul Hallett are thanked for their constructive comments that helped to improve the manuscript.
PY - 2010/8
Y1 - 2010/8
N2 - Overgrazing is a major cause of grassland degradation in semi-arid regions. To evaluate how soil water and heat fluxes respond to grazing, investigations on soil, plant and meteorological parameters were conducted at four sites with different grazing intensities through three growing periods (2004-2006) in a steppe ecosystem of Inner Mongolia. The grazing intensities were (1) ungrazed since 1979, (2) ungrazed since 1999, (3) moderately grazed, and (4) heavily grazed. In comparison to other treatments, heavy grazing had decreased total pore and macropores volumes. The impacts of these grazing-induced changes of soil pore structure on water and heat fluxes were simulated by the processed-based hydraulic model HYDRUS-1D. To account for the site-specific boundary condition, we partitioned evapotranspiration as a function of dynamic cover area index of green and dead plant materials, used the root growth model related with root length density, and estimated interception using the SHAW model. Furthermore, the uncertainty of soil hydraulic parameters on model results was evaluated using three simulation approaches: (i) laboratory-derived hydraulic properties (LDP), (ii) neural network (NN) analysis, and (iii) inverse optimization (Inverse). On the basis of previous calibrations, HYDRUS-1D was validated with a good agreement between modeled and measured soil moisture and temperature, which provided a basis to evaluate the grazing effects on water and energy balance. Of the three approaches used, the Inverse expressed the best simulation, and the LDP was better than the NN due to more precise reflection of soil structural functions. Model result showed that, due to the changed soil structure and soil surface coverage, grazing increased soil heat fluxes. There was no significant difference on water budget components between the two ungrazed sites and moderate grazing, while heavy grazing significantly decreased interception from 17 to 7. mm and transpiration from 121 to 74. mm, and increased evaporation from 88 to 128. mm. We conclude that intensive grazing in Inner Mongolia grassland deteriorated soil functions and reduced plant available water, and consequently reduced grassland productivity and enhanced the risks for wind and water erosion.
AB - Overgrazing is a major cause of grassland degradation in semi-arid regions. To evaluate how soil water and heat fluxes respond to grazing, investigations on soil, plant and meteorological parameters were conducted at four sites with different grazing intensities through three growing periods (2004-2006) in a steppe ecosystem of Inner Mongolia. The grazing intensities were (1) ungrazed since 1979, (2) ungrazed since 1999, (3) moderately grazed, and (4) heavily grazed. In comparison to other treatments, heavy grazing had decreased total pore and macropores volumes. The impacts of these grazing-induced changes of soil pore structure on water and heat fluxes were simulated by the processed-based hydraulic model HYDRUS-1D. To account for the site-specific boundary condition, we partitioned evapotranspiration as a function of dynamic cover area index of green and dead plant materials, used the root growth model related with root length density, and estimated interception using the SHAW model. Furthermore, the uncertainty of soil hydraulic parameters on model results was evaluated using three simulation approaches: (i) laboratory-derived hydraulic properties (LDP), (ii) neural network (NN) analysis, and (iii) inverse optimization (Inverse). On the basis of previous calibrations, HYDRUS-1D was validated with a good agreement between modeled and measured soil moisture and temperature, which provided a basis to evaluate the grazing effects on water and energy balance. Of the three approaches used, the Inverse expressed the best simulation, and the LDP was better than the NN due to more precise reflection of soil structural functions. Model result showed that, due to the changed soil structure and soil surface coverage, grazing increased soil heat fluxes. There was no significant difference on water budget components between the two ungrazed sites and moderate grazing, while heavy grazing significantly decreased interception from 17 to 7. mm and transpiration from 121 to 74. mm, and increased evaporation from 88 to 128. mm. We conclude that intensive grazing in Inner Mongolia grassland deteriorated soil functions and reduced plant available water, and consequently reduced grassland productivity and enhanced the risks for wind and water erosion.
KW - Animal trampling
KW - Evapotranspiration
KW - Inner Mongolia grassland
KW - Model
KW - Soil properties
KW - Water and heat fluxes
UR - http://www.scopus.com/inward/record.url?scp=77955056349&partnerID=8YFLogxK
U2 - 10.1016/j.still.2010.04.005
DO - 10.1016/j.still.2010.04.005
M3 - Article
AN - SCOPUS:77955056349
VL - 109
SP - 75
EP - 86
JO - Soil and Tillage Research
JF - Soil and Tillage Research
SN - 0167-1987
IS - 2
ER -