Lipschitz regularity of sub-elliptic harmonic maps into CAT(0) space

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Renan Assimos
  • Yaoting Gui
  • Jürgen Jost

Organisationseinheiten

Externe Organisationen

  • Peking University
  • Max-Planck-Institut für Mathematik in den Naturwissenschaften (MIS)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)213-238
Seitenumfang26
FachzeitschriftJournal fur die Reine und Angewandte Mathematik
Jahrgang2024
Ausgabenummer817
Frühes Online-Datum4 Sept. 2024
PublikationsstatusVeröffentlicht - 1 Dez. 2024

Abstract

We prove the local Lipschitz continuity of sub-elliptic harmonic maps between certain singular spaces, more specifically from the n-dimensional Heisenberg group into CAT(0) spaces. Our main theorem establishes that these maps have the desired Lipschitz regularity, extending the Hölder regularity in this setting proven in [Y. Gui, J. Jost and X. Li-Jost, Subelliptic harmonic maps with values in metric spaces of nonpositive curvature, Commun. Math. Res. 38 (2022), no. 4, 516-534] and obtaining same regularity as in [H.-C. Zhang and X.-P. Zhu, Lipschitz continuity of harmonic maps between Alexandrov spaces, Invent. Math. 211 (2018), no. 3, 863-934] for certain sub-Riemannian geometries; see also [N. Gigli, On the regularity of harmonic maps from RCD(K,N) to CAT(0) spaces and related results, preprint 2022, https://arxiv.org/abs/2204.04317; and A. Mondino and D. Semola, Lipschitz continuity and Bochner-Eells-Sampson inequality for harmonic maps from RCD(k,n) spaces to CAT(0) spaces, preprint 2022, https://arxiv.org/abs/2202.01590] for the generalisation to RCD spaces. The present result paves the way for a general regularity theory of sub-elliptic harmonic maps, providing a versatile approach applicable beyond the Heisenberg group.

ASJC Scopus Sachgebiete

Zitieren

Lipschitz regularity of sub-elliptic harmonic maps into CAT(0) space. / Assimos, Renan; Gui, Yaoting; Jost, Jürgen.
in: Journal fur die Reine und Angewandte Mathematik, Jahrgang 2024, Nr. 817, 01.12.2024, S. 213-238.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Assimos R, Gui Y, Jost J. Lipschitz regularity of sub-elliptic harmonic maps into CAT(0) space. Journal fur die Reine und Angewandte Mathematik. 2024 Dez 1;2024(817):213-238. Epub 2024 Sep 4. doi: 10.1515/crelle-2024-0066
Assimos, Renan ; Gui, Yaoting ; Jost, Jürgen. / Lipschitz regularity of sub-elliptic harmonic maps into CAT(0) space. in: Journal fur die Reine und Angewandte Mathematik. 2024 ; Jahrgang 2024, Nr. 817. S. 213-238.
Download
@article{1077f2d36d6e439181ca5049668bdec9,
title = "Lipschitz regularity of sub-elliptic harmonic maps into CAT(0) space",
abstract = "We prove the local Lipschitz continuity of sub-elliptic harmonic maps between certain singular spaces, more specifically from the n-dimensional Heisenberg group into CAT(0) spaces. Our main theorem establishes that these maps have the desired Lipschitz regularity, extending the H{\"o}lder regularity in this setting proven in [Y. Gui, J. Jost and X. Li-Jost, Subelliptic harmonic maps with values in metric spaces of nonpositive curvature, Commun. Math. Res. 38 (2022), no. 4, 516-534] and obtaining same regularity as in [H.-C. Zhang and X.-P. Zhu, Lipschitz continuity of harmonic maps between Alexandrov spaces, Invent. Math. 211 (2018), no. 3, 863-934] for certain sub-Riemannian geometries; see also [N. Gigli, On the regularity of harmonic maps from RCD(K,N) to CAT(0) spaces and related results, preprint 2022, https://arxiv.org/abs/2204.04317; and A. Mondino and D. Semola, Lipschitz continuity and Bochner-Eells-Sampson inequality for harmonic maps from RCD(k,n) spaces to CAT(0) spaces, preprint 2022, https://arxiv.org/abs/2202.01590] for the generalisation to RCD spaces. The present result paves the way for a general regularity theory of sub-elliptic harmonic maps, providing a versatile approach applicable beyond the Heisenberg group.",
author = "Renan Assimos and Yaoting Gui and J{\"u}rgen Jost",
note = "Publisher Copyright: {\textcopyright} 2024 Walter de Gruyter GmbH, Berlin/Boston.",
year = "2024",
month = dec,
day = "1",
doi = "10.1515/crelle-2024-0066",
language = "English",
volume = "2024",
pages = "213--238",
journal = "Journal fur die Reine und Angewandte Mathematik",
issn = "0075-4102",
publisher = "Walter de Gruyter GmbH",
number = "817",

}

Download

TY - JOUR

T1 - Lipschitz regularity of sub-elliptic harmonic maps into CAT(0) space

AU - Assimos, Renan

AU - Gui, Yaoting

AU - Jost, Jürgen

N1 - Publisher Copyright: © 2024 Walter de Gruyter GmbH, Berlin/Boston.

PY - 2024/12/1

Y1 - 2024/12/1

N2 - We prove the local Lipschitz continuity of sub-elliptic harmonic maps between certain singular spaces, more specifically from the n-dimensional Heisenberg group into CAT(0) spaces. Our main theorem establishes that these maps have the desired Lipschitz regularity, extending the Hölder regularity in this setting proven in [Y. Gui, J. Jost and X. Li-Jost, Subelliptic harmonic maps with values in metric spaces of nonpositive curvature, Commun. Math. Res. 38 (2022), no. 4, 516-534] and obtaining same regularity as in [H.-C. Zhang and X.-P. Zhu, Lipschitz continuity of harmonic maps between Alexandrov spaces, Invent. Math. 211 (2018), no. 3, 863-934] for certain sub-Riemannian geometries; see also [N. Gigli, On the regularity of harmonic maps from RCD(K,N) to CAT(0) spaces and related results, preprint 2022, https://arxiv.org/abs/2204.04317; and A. Mondino and D. Semola, Lipschitz continuity and Bochner-Eells-Sampson inequality for harmonic maps from RCD(k,n) spaces to CAT(0) spaces, preprint 2022, https://arxiv.org/abs/2202.01590] for the generalisation to RCD spaces. The present result paves the way for a general regularity theory of sub-elliptic harmonic maps, providing a versatile approach applicable beyond the Heisenberg group.

AB - We prove the local Lipschitz continuity of sub-elliptic harmonic maps between certain singular spaces, more specifically from the n-dimensional Heisenberg group into CAT(0) spaces. Our main theorem establishes that these maps have the desired Lipschitz regularity, extending the Hölder regularity in this setting proven in [Y. Gui, J. Jost and X. Li-Jost, Subelliptic harmonic maps with values in metric spaces of nonpositive curvature, Commun. Math. Res. 38 (2022), no. 4, 516-534] and obtaining same regularity as in [H.-C. Zhang and X.-P. Zhu, Lipschitz continuity of harmonic maps between Alexandrov spaces, Invent. Math. 211 (2018), no. 3, 863-934] for certain sub-Riemannian geometries; see also [N. Gigli, On the regularity of harmonic maps from RCD(K,N) to CAT(0) spaces and related results, preprint 2022, https://arxiv.org/abs/2204.04317; and A. Mondino and D. Semola, Lipschitz continuity and Bochner-Eells-Sampson inequality for harmonic maps from RCD(k,n) spaces to CAT(0) spaces, preprint 2022, https://arxiv.org/abs/2202.01590] for the generalisation to RCD spaces. The present result paves the way for a general regularity theory of sub-elliptic harmonic maps, providing a versatile approach applicable beyond the Heisenberg group.

UR - http://www.scopus.com/inward/record.url?scp=85203519933&partnerID=8YFLogxK

U2 - 10.1515/crelle-2024-0066

DO - 10.1515/crelle-2024-0066

M3 - Article

AN - SCOPUS:85203519933

VL - 2024

SP - 213

EP - 238

JO - Journal fur die Reine und Angewandte Mathematik

JF - Journal fur die Reine und Angewandte Mathematik

SN - 0075-4102

IS - 817

ER -