Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 82 |
Fachzeitschrift | Plant Methods |
Jahrgang | 18 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 11 Juni 2022 |
Abstract
Lasers enable modification of living and non-living matter with submicron precision in a contact-free manner which has raised the interest of researchers for decades. Accordingly, laser technologies have drawn interest across disciplines. They have been established as a valuable tool to permeabilize cellular membranes for molecular delivery in a process termed photoinjection. Laser-based molecular delivery was first reported in 1984, when normal kidney cells were successfully transfected with a frequency-multiplied Nd:YAG laser. Due to the rapid development of optical technologies, far more sophisticated laser platforms have become available. In particular, near infrared femtosecond (NIR fs) laser sources enable an increasing progress of laser-based molecular delivery procedures and opened up multiple variations and applications of this technique.This review is intended to provide a plant science audience with the physical principles as well as the application potentials of laser-based molecular delivery. The historical origins and technical development of laser-based molecular delivery are summarized and the principle physical processes involved in these approaches and their implications for practical use are introduced. Successful cases of laser-based molecular delivery in plant science will be reviewed in detail, and the specific hurdles that plant materials pose will be discussed. Finally, we will give an outlook on current limitations and possible future applications of laser-based molecular delivery in the field of plant science.
ASJC Scopus Sachgebiete
- Biochemie, Genetik und Molekularbiologie (insg.)
- Biotechnologie
- Biochemie, Genetik und Molekularbiologie (insg.)
- Genetik
- Agrar- und Biowissenschaften (insg.)
- Pflanzenkunde
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Plant Methods, Jahrgang 18, Nr. 1, 82, 11.06.2022.
Publikation: Beitrag in Fachzeitschrift › Übersichtsarbeit › Forschung › Peer-Review
}
TY - JOUR
T1 - Laser-based molecular delivery and its applications in plant science
AU - Heinemann, Dag
AU - Zabic, Miroslav
AU - Terakawa, Mitsuhiro
AU - Boch, Jens
N1 - Funding Information: Open Access funding enabled and organized by Projekt DEAL. This work was funded by the Federal Ministry of Education and Research (BMBF), project ID 031B0542, and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453).
PY - 2022/6/11
Y1 - 2022/6/11
N2 - Lasers enable modification of living and non-living matter with submicron precision in a contact-free manner which has raised the interest of researchers for decades. Accordingly, laser technologies have drawn interest across disciplines. They have been established as a valuable tool to permeabilize cellular membranes for molecular delivery in a process termed photoinjection. Laser-based molecular delivery was first reported in 1984, when normal kidney cells were successfully transfected with a frequency-multiplied Nd:YAG laser. Due to the rapid development of optical technologies, far more sophisticated laser platforms have become available. In particular, near infrared femtosecond (NIR fs) laser sources enable an increasing progress of laser-based molecular delivery procedures and opened up multiple variations and applications of this technique.This review is intended to provide a plant science audience with the physical principles as well as the application potentials of laser-based molecular delivery. The historical origins and technical development of laser-based molecular delivery are summarized and the principle physical processes involved in these approaches and their implications for practical use are introduced. Successful cases of laser-based molecular delivery in plant science will be reviewed in detail, and the specific hurdles that plant materials pose will be discussed. Finally, we will give an outlook on current limitations and possible future applications of laser-based molecular delivery in the field of plant science.
AB - Lasers enable modification of living and non-living matter with submicron precision in a contact-free manner which has raised the interest of researchers for decades. Accordingly, laser technologies have drawn interest across disciplines. They have been established as a valuable tool to permeabilize cellular membranes for molecular delivery in a process termed photoinjection. Laser-based molecular delivery was first reported in 1984, when normal kidney cells were successfully transfected with a frequency-multiplied Nd:YAG laser. Due to the rapid development of optical technologies, far more sophisticated laser platforms have become available. In particular, near infrared femtosecond (NIR fs) laser sources enable an increasing progress of laser-based molecular delivery procedures and opened up multiple variations and applications of this technique.This review is intended to provide a plant science audience with the physical principles as well as the application potentials of laser-based molecular delivery. The historical origins and technical development of laser-based molecular delivery are summarized and the principle physical processes involved in these approaches and their implications for practical use are introduced. Successful cases of laser-based molecular delivery in plant science will be reviewed in detail, and the specific hurdles that plant materials pose will be discussed. Finally, we will give an outlook on current limitations and possible future applications of laser-based molecular delivery in the field of plant science.
KW - Laser transfection
KW - Laser-tissue interaction
KW - Optoporation
KW - Photoinjection
KW - Transformation
UR - http://www.scopus.com/inward/record.url?scp=85131827124&partnerID=8YFLogxK
U2 - 10.1186/s13007-022-00908-9
DO - 10.1186/s13007-022-00908-9
M3 - Review article
C2 - 35690858
VL - 18
JO - Plant Methods
JF - Plant Methods
SN - 1746-4811
IS - 1
M1 - 82
ER -