Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 2653 |
Seitenumfang | 9 |
Fachzeitschrift | MATERIALS |
Jahrgang | 17 |
Ausgabenummer | 11 |
Publikationsstatus | Veröffentlicht - 31 Mai 2024 |
Abstract
In a recent breakthrough in the field of two-dimensional (2D) nanomaterials, the first synthesis of a single-atom-thick gold lattice of goldene has been reported through an innovative wet chemical removal of Ti3C2 from the layered Ti3AuC2. Inspired by this advancement, in this communication and for the first time, a comprehensive first-principles investigation using a combination of density functional theory (DFT) and machine learning interatomic potential (MLIP) calculations has been conducted to delve into the stability, electronic, mechanical and thermal properties of the single-layer and free-standing goldene. The presented results confirm thermal stability at 700 K as well as remarkable dynamical stability of the stress-free and strained goldene monolayer. At the ground state, the elastic modulus and tensile strength of the goldene monolayer are predicted to be over 226 and 12 GPa, respectively. Through validated MLIP-based molecular dynamics calculations, it is found that at room temperature, the goldene nanosheet can exhibit anisotropic tensile strength over 9 GPa and a low lattice thermal conductivity around 10 ± 2 W/(m.K), respectively. We finally show that the native metallic nature of the goldene monolayer stays intact under large tensile strains. The combined insights from DFT and MLIP-based results provide a comprehensive understanding of the stability, mechanical, thermal and electronic properties of goldene nanosheets.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: MATERIALS, Jahrgang 17, Nr. 11, 2653, 31.05.2024.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Goldene
T2 - An Anisotropic Metallic Monolayer with Remarkable Stability and Rigidity and Low Lattice Thermal Conductivity
AU - Mortazavi, Bohayra
N1 - Publisher Copyright: © 2024 by the author.
PY - 2024/5/31
Y1 - 2024/5/31
N2 - In a recent breakthrough in the field of two-dimensional (2D) nanomaterials, the first synthesis of a single-atom-thick gold lattice of goldene has been reported through an innovative wet chemical removal of Ti3C2 from the layered Ti3AuC2. Inspired by this advancement, in this communication and for the first time, a comprehensive first-principles investigation using a combination of density functional theory (DFT) and machine learning interatomic potential (MLIP) calculations has been conducted to delve into the stability, electronic, mechanical and thermal properties of the single-layer and free-standing goldene. The presented results confirm thermal stability at 700 K as well as remarkable dynamical stability of the stress-free and strained goldene monolayer. At the ground state, the elastic modulus and tensile strength of the goldene monolayer are predicted to be over 226 and 12 GPa, respectively. Through validated MLIP-based molecular dynamics calculations, it is found that at room temperature, the goldene nanosheet can exhibit anisotropic tensile strength over 9 GPa and a low lattice thermal conductivity around 10 ± 2 W/(m.K), respectively. We finally show that the native metallic nature of the goldene monolayer stays intact under large tensile strains. The combined insights from DFT and MLIP-based results provide a comprehensive understanding of the stability, mechanical, thermal and electronic properties of goldene nanosheets.
AB - In a recent breakthrough in the field of two-dimensional (2D) nanomaterials, the first synthesis of a single-atom-thick gold lattice of goldene has been reported through an innovative wet chemical removal of Ti3C2 from the layered Ti3AuC2. Inspired by this advancement, in this communication and for the first time, a comprehensive first-principles investigation using a combination of density functional theory (DFT) and machine learning interatomic potential (MLIP) calculations has been conducted to delve into the stability, electronic, mechanical and thermal properties of the single-layer and free-standing goldene. The presented results confirm thermal stability at 700 K as well as remarkable dynamical stability of the stress-free and strained goldene monolayer. At the ground state, the elastic modulus and tensile strength of the goldene monolayer are predicted to be over 226 and 12 GPa, respectively. Through validated MLIP-based molecular dynamics calculations, it is found that at room temperature, the goldene nanosheet can exhibit anisotropic tensile strength over 9 GPa and a low lattice thermal conductivity around 10 ± 2 W/(m.K), respectively. We finally show that the native metallic nature of the goldene monolayer stays intact under large tensile strains. The combined insights from DFT and MLIP-based results provide a comprehensive understanding of the stability, mechanical, thermal and electronic properties of goldene nanosheets.
KW - goldene
KW - lattice thermal conductivity
KW - machine learning
KW - metallic monolayer
KW - tensile strength
UR - http://www.scopus.com/inward/record.url?scp=85196214162&partnerID=8YFLogxK
U2 - 10.3390/ma17112653
DO - 10.3390/ma17112653
M3 - Article
AN - SCOPUS:85196214162
VL - 17
JO - MATERIALS
JF - MATERIALS
SN - 1996-1944
IS - 11
M1 - 2653
ER -