Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 444-462 |
Seitenumfang | 19 |
Fachzeitschrift | Bulletin of the London Mathematical Society |
Jahrgang | 57 |
Ausgabenummer | 2 |
Frühes Online-Datum | 11 Dez. 2024 |
Publikationsstatus | Veröffentlicht - 6 Feb. 2025 |
Abstract
It is shown that semilinear parabolic evolution equations (Formula presented.) featuring Hölder continuous nonlinearities (Formula presented.) with at most linear growth possess global strong solutions for a general class of initial data. The abstract results are applied to a recent model describing front propagation in bushfires and in the context of a reaction–diffusion system.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Bulletin of the London Mathematical Society, Jahrgang 57, Nr. 2, 06.02.2025, S. 444-462.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Global solutions for semilinear parabolic evolution problems with Hölder continuous nonlinearities
AU - Matioc, Bogdan Vasile
AU - Walker, Christoph
N1 - Publisher Copyright: © 2024 The Author(s). Bulletin of the London Mathematical Society is copyright © London Mathematical Society.
PY - 2025/2/6
Y1 - 2025/2/6
N2 - It is shown that semilinear parabolic evolution equations (Formula presented.) featuring Hölder continuous nonlinearities (Formula presented.) with at most linear growth possess global strong solutions for a general class of initial data. The abstract results are applied to a recent model describing front propagation in bushfires and in the context of a reaction–diffusion system.
AB - It is shown that semilinear parabolic evolution equations (Formula presented.) featuring Hölder continuous nonlinearities (Formula presented.) with at most linear growth possess global strong solutions for a general class of initial data. The abstract results are applied to a recent model describing front propagation in bushfires and in the context of a reaction–diffusion system.
UR - http://www.scopus.com/inward/record.url?scp=85211475496&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2404.11089
DO - 10.48550/arXiv.2404.11089
M3 - Article
AN - SCOPUS:85211475496
VL - 57
SP - 444
EP - 462
JO - Bulletin of the London Mathematical Society
JF - Bulletin of the London Mathematical Society
SN - 0024-6093
IS - 2
ER -