Generation and all-optical manipulation of polychromatic photonic molecules

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autorschaft

  • Stephanie Willms

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades29 Juli 2024
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 14 Aug. 2024

Abstract

Die jüngste Demonstration einer neuartigen Klasse photonischer Moleküle hat neue Wege bei der Untersuchung von gebundenen Soliton-Zuständen eröffnet, einschließlich komplexer Propagationsdynamik, maßgeschneiderter spektraler Eigenschaften und starker Robustheit. In dieser Arbeit werden detaillierte numerische Studien zu den Eigenschaften, Generationsmöglichkeiten
und geeigneten System für die Beobachtung polychromatischer photonischer Moleküle vorgestellt. Photonische Molekülzustände setzen sich grundsätzlich aus zwei oder mehr Komponenten zusammen, die die Bedingung der Gruppengeschwindigkeitsanpassung erfüllen während ihre Zentralfrequenzen in weit voneinander entfernten Regionen anomaler Dispersion liegen. Diese Bedin-
gung ermöglicht den Unterpulsen eine inkohärente Bindung einzugehen und einen Molekülzustand zu bilden. Folglich ist die charakteristische Struktur eines photonischen Moleküls ein einziger Puls im Zeitbereich und eine Doppelhöckerstruktur im Frequenzbereich. Die charakteristische Dop-
pelhöckerstruktur im Frequenzbereich wird durch die Zetralfrequenzen der beteiligten Solitonen bestimmt, während der lokalisierte Zustand im Zeitbereich aufgrund seiner Multifrequenzzusammensetzung in Interferenzmerkmale aufweist. Diese ursprünglich als Solitonmoleküle mit zwei Frequenzen bezeichneten Zustände wurden um zusätzliche Komponenten erweitert, was zu Untersuchungen von Zuständen mit drei oder mehr Unterpulsen führte, denen sie ihre heutige Bezeichnung als polychromatische photonische Moleküle verdanken. Die Struktur polychromatischer photonischer Moleküle steht im Gegensatz zu den üblichen Soliton-Molekülen, die im Zeitbereich
eine Doppelhöckerstruktur aufweisen, die sich aus der phasenabhängigen anziehenden Bindung zwischen zwei fundamentalen Solitonen ergibt. Im Detail geht es in dieser Arbeit um die Untersuchung der Eigenschaften und Eigendynamik photonischer Moleküle. Die Untersuchungen umfassen grundlegende Eigenschaften, Stabilitätsanalysen und verschiedene Szenarien, die die spektralen und zeitlichen Eigenschaften beeinflussen. Die Arbeit erforscht Grenzfälle, in denen schwache Energieanteile in Soliton-induzierten Potentialtöpfen transportiert und übertragen werden können. Es werden verschiedene Generationssmechanismen diskutiert, darunter die direkte, strahlungsfreie Generation, die interaktionsinduzierte Generation und die Selbsterzeugung. Der Einfluss der Anfangsbedingungen auf die
Generationsdynamik wird untersucht, und es werden Propagationsszenarien mit dem Ziel erforscht, die Auswirkungen von Störungen auf einen stabilen Molekülzustand zu untersuchen. Um die Robustheit der Molekülzustände zu bewerten, werden externe Störungen, die durch dispersive Wellen und Solitonen hervorgerufen werden, berücksichtigt. Es wird gezeigt, dass sie einen
besonderen übergangsprozess im Molekülzustand auslösen. Schließlich wird das Konzept der polychromatischen Molekülzustände mit meheren Unterpulse besporchen. Die Untersuchungen zielen auf einen integrierten Ansatz ab, der sich explizit auf die Untersuchung photonischer Moleküle in
einem faserbasierten Aufbau konzentriert. Dieser Ansatz bietet dem System Flexibilität, Handhabbarkeit und Robustheit, was die entsprechenden Eigenschaften für die Erzeugung photonischer Moleküle erfordert. Es werden selbst entworfene und manipulierbare Dispersionseigenschaften
von antiresonanten hohl-Kern Fasern erforscht, die die Vielseitigkeit der Dispersionseigenschaften zeigen, die durch die Veränderung faserspezifischer Parameter erreicht werden können. Für diese Fasern wird auch der Einfluss des nichtlinearen Effekts der Ionisierung untersucht.

Zitieren

Generation and all-optical manipulation of polychromatic photonic molecules. / Willms, Stephanie.
Hannover, 2024. 158 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Willms, S 2024, 'Generation and all-optical manipulation of polychromatic photonic molecules', Doctor rerum naturalium, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/17850
Willms, S. (2024). Generation and all-optical manipulation of polychromatic photonic molecules. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/17850
Willms S. Generation and all-optical manipulation of polychromatic photonic molecules. Hannover, 2024. 158 S. doi: 10.15488/17850
Download
@phdthesis{b10049e0d86b4485897af23f02d05e5f,
title = "Generation and all-optical manipulation of polychromatic photonic molecules",
abstract = "The recent demonstration of a novel class of photonic molecules has opened new avenues in the study of soliton bound states, including complex propagation dynamics, tailorable spectral prop- erties, and strong robustness against perturbations. In this work detailed numerical studies of the characteristics, generation options, and suitable system approaches for polychromatic photonic molecules are presented. Photonic molecule states are composed of basically two or more constituents which have to fulfill the prerequisite of group-velocity matching exhibiting different center frequencies located in vastly separated regions of anomalous dispersion. This condition allows the constituent subpulses to engage into a mutual incoherent binding mechanism building up a molecule state. Consequently, the characteristic structure of a photonic molecule is a single localized feature in the time domain and a double-hump structure in the frequency domain. The characteristic double-hump structure in the frequency domain is dictated by the center frequencies of the contributing solitons, while the localized state in the time domain is dressed in interference fringes due to its multi-frequency composition. These states, initially labeled as soliton molecules with two frequencies, have been extended to include additional components, leading to investigations of states with three subpulses or even several equally spaced frequency centers, to which they owe their current designation as polychromatic photonic molecules. The structure of polychromatic photonic molecules is in contrast to the common soliton molecules which obtain a double-hump structure in the time domain, resulting from the phase-related attractive binding between two fundamental solitons. In detail, this work focuses on investigating the properties and inherent dynamics of photonic molecules. The investigations cover basic properties, stability analyses, and diverse scenarios influ- encing spectral and temporal characteristics. The work explores limiting cases where weak energy portions can be transported and transferred in soliton-induced potential wells. Various gener- ation mechanisms are discussed, including direct, radiation-free generation, interaction-induced generation, and self-generation. The influence of input conditions on the creation dynamics is ex- amined, and propagation scenarios are explored aiming to study the impact of the Raman effect, third-order dispersion, and loss on a stable molecule state. External perturbations, induced by dispersive waves and solitons, are considered to assess the robustness of the molecule states and show to initiate a peculiar molecule state transition process. Finally, the concept of polychromatic molecule states is introduced, extending the two-frequency photonic molecule concept to include multiple constituents. The research aims for an integrated approach, focusing explicitly on in- vestigating photonic molecules in a fiber-based setup, where the complex dispersion properties must be intrinsically present. This approach provides flexibility, manageability, and robustness to the system, requiring the appropriate properties for photonic molecule generation. Self-designed and easily manipulable dispersion characteristics of anti-resonant hollow-core fibers are explored, showcasing the versatility of the dispersion properties achievable by altering fiber-specific param- eters. For those fibers also the impact of the nonlinear effect of ionization is investigated",
author = "Stephanie Willms",
year = "2024",
month = aug,
day = "14",
doi = "10.15488/17850",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Generation and all-optical manipulation of polychromatic photonic molecules

AU - Willms, Stephanie

PY - 2024/8/14

Y1 - 2024/8/14

N2 - The recent demonstration of a novel class of photonic molecules has opened new avenues in the study of soliton bound states, including complex propagation dynamics, tailorable spectral prop- erties, and strong robustness against perturbations. In this work detailed numerical studies of the characteristics, generation options, and suitable system approaches for polychromatic photonic molecules are presented. Photonic molecule states are composed of basically two or more constituents which have to fulfill the prerequisite of group-velocity matching exhibiting different center frequencies located in vastly separated regions of anomalous dispersion. This condition allows the constituent subpulses to engage into a mutual incoherent binding mechanism building up a molecule state. Consequently, the characteristic structure of a photonic molecule is a single localized feature in the time domain and a double-hump structure in the frequency domain. The characteristic double-hump structure in the frequency domain is dictated by the center frequencies of the contributing solitons, while the localized state in the time domain is dressed in interference fringes due to its multi-frequency composition. These states, initially labeled as soliton molecules with two frequencies, have been extended to include additional components, leading to investigations of states with three subpulses or even several equally spaced frequency centers, to which they owe their current designation as polychromatic photonic molecules. The structure of polychromatic photonic molecules is in contrast to the common soliton molecules which obtain a double-hump structure in the time domain, resulting from the phase-related attractive binding between two fundamental solitons. In detail, this work focuses on investigating the properties and inherent dynamics of photonic molecules. The investigations cover basic properties, stability analyses, and diverse scenarios influ- encing spectral and temporal characteristics. The work explores limiting cases where weak energy portions can be transported and transferred in soliton-induced potential wells. Various gener- ation mechanisms are discussed, including direct, radiation-free generation, interaction-induced generation, and self-generation. The influence of input conditions on the creation dynamics is ex- amined, and propagation scenarios are explored aiming to study the impact of the Raman effect, third-order dispersion, and loss on a stable molecule state. External perturbations, induced by dispersive waves and solitons, are considered to assess the robustness of the molecule states and show to initiate a peculiar molecule state transition process. Finally, the concept of polychromatic molecule states is introduced, extending the two-frequency photonic molecule concept to include multiple constituents. The research aims for an integrated approach, focusing explicitly on in- vestigating photonic molecules in a fiber-based setup, where the complex dispersion properties must be intrinsically present. This approach provides flexibility, manageability, and robustness to the system, requiring the appropriate properties for photonic molecule generation. Self-designed and easily manipulable dispersion characteristics of anti-resonant hollow-core fibers are explored, showcasing the versatility of the dispersion properties achievable by altering fiber-specific param- eters. For those fibers also the impact of the nonlinear effect of ionization is investigated

AB - The recent demonstration of a novel class of photonic molecules has opened new avenues in the study of soliton bound states, including complex propagation dynamics, tailorable spectral prop- erties, and strong robustness against perturbations. In this work detailed numerical studies of the characteristics, generation options, and suitable system approaches for polychromatic photonic molecules are presented. Photonic molecule states are composed of basically two or more constituents which have to fulfill the prerequisite of group-velocity matching exhibiting different center frequencies located in vastly separated regions of anomalous dispersion. This condition allows the constituent subpulses to engage into a mutual incoherent binding mechanism building up a molecule state. Consequently, the characteristic structure of a photonic molecule is a single localized feature in the time domain and a double-hump structure in the frequency domain. The characteristic double-hump structure in the frequency domain is dictated by the center frequencies of the contributing solitons, while the localized state in the time domain is dressed in interference fringes due to its multi-frequency composition. These states, initially labeled as soliton molecules with two frequencies, have been extended to include additional components, leading to investigations of states with three subpulses or even several equally spaced frequency centers, to which they owe their current designation as polychromatic photonic molecules. The structure of polychromatic photonic molecules is in contrast to the common soliton molecules which obtain a double-hump structure in the time domain, resulting from the phase-related attractive binding between two fundamental solitons. In detail, this work focuses on investigating the properties and inherent dynamics of photonic molecules. The investigations cover basic properties, stability analyses, and diverse scenarios influ- encing spectral and temporal characteristics. The work explores limiting cases where weak energy portions can be transported and transferred in soliton-induced potential wells. Various gener- ation mechanisms are discussed, including direct, radiation-free generation, interaction-induced generation, and self-generation. The influence of input conditions on the creation dynamics is ex- amined, and propagation scenarios are explored aiming to study the impact of the Raman effect, third-order dispersion, and loss on a stable molecule state. External perturbations, induced by dispersive waves and solitons, are considered to assess the robustness of the molecule states and show to initiate a peculiar molecule state transition process. Finally, the concept of polychromatic molecule states is introduced, extending the two-frequency photonic molecule concept to include multiple constituents. The research aims for an integrated approach, focusing explicitly on in- vestigating photonic molecules in a fiber-based setup, where the complex dispersion properties must be intrinsically present. This approach provides flexibility, manageability, and robustness to the system, requiring the appropriate properties for photonic molecule generation. Self-designed and easily manipulable dispersion characteristics of anti-resonant hollow-core fibers are explored, showcasing the versatility of the dispersion properties achievable by altering fiber-specific param- eters. For those fibers also the impact of the nonlinear effect of ionization is investigated

U2 - 10.15488/17850

DO - 10.15488/17850

M3 - Doctoral thesis

CY - Hannover

ER -

Von denselben Autoren