Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 269 |
Fachzeitschrift | CRYSTALS |
Jahrgang | 13 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 3 Feb. 2023 |
Abstract
In the present work, the elevated-temperature deformation characteristics and microstructural evolution of a Ti-5V-5Mo-5Cr-4Al alloy in solution-treatment conditions were studied under a tensile load at temperatures in the range of 25 to 550 °C and strain rates between 0.001 and 0.1 s−1. The results obtained indicated that, essentially, dynamic recovery (DRV) was the dominant softening mechanism in the case of the regimes considered. An analysis based on transmission electron microscopy (TEM) and the assessment of the mechanical behavior of the solution-heat-treated Ti-5V-5Mo-5Cr-4Al alloy revealed that dynamic precipitation (DPN) only took place at a strain rate of 0.001 s−1 and at temperatures of 450 °C and 500 °C. Void coalescence occurred upon an increase in the deformation temperature and a decrease in the strain rate due to a higher rate of diffusion and the provision of sufficient time for growth, respectively. The results obtained in the present study pave the way for the robust processing of this novel β titanium alloy. Depending on the deformation parameters, the deformation characteristics can be governed by either DRV (at moderate temperatures) or DPN (at moderate temperatures and at low rates of deformation).
ASJC Scopus Sachgebiete
- Chemische Verfahrenstechnik (insg.)
- Allgemeine chemische Verfahrenstechnik
- Werkstoffwissenschaften (insg.)
- Allgemeine Materialwissenschaften
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Chemie (insg.)
- Anorganische Chemie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: CRYSTALS, Jahrgang 13, Nr. 2, 269, 03.02.2023.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Elevated Temperature Mechanical Characteristics and Fracture Behavior of a Novel Beta Titanium Alloy
AU - Sajadifar, Seyed Vahid
AU - Maier, Hans Jürgen
AU - Niendorf, Thomas
AU - Yapici, Guney Guven
PY - 2023/2/3
Y1 - 2023/2/3
N2 - In the present work, the elevated-temperature deformation characteristics and microstructural evolution of a Ti-5V-5Mo-5Cr-4Al alloy in solution-treatment conditions were studied under a tensile load at temperatures in the range of 25 to 550 °C and strain rates between 0.001 and 0.1 s−1. The results obtained indicated that, essentially, dynamic recovery (DRV) was the dominant softening mechanism in the case of the regimes considered. An analysis based on transmission electron microscopy (TEM) and the assessment of the mechanical behavior of the solution-heat-treated Ti-5V-5Mo-5Cr-4Al alloy revealed that dynamic precipitation (DPN) only took place at a strain rate of 0.001 s−1 and at temperatures of 450 °C and 500 °C. Void coalescence occurred upon an increase in the deformation temperature and a decrease in the strain rate due to a higher rate of diffusion and the provision of sufficient time for growth, respectively. The results obtained in the present study pave the way for the robust processing of this novel β titanium alloy. Depending on the deformation parameters, the deformation characteristics can be governed by either DRV (at moderate temperatures) or DPN (at moderate temperatures and at low rates of deformation).
AB - In the present work, the elevated-temperature deformation characteristics and microstructural evolution of a Ti-5V-5Mo-5Cr-4Al alloy in solution-treatment conditions were studied under a tensile load at temperatures in the range of 25 to 550 °C and strain rates between 0.001 and 0.1 s−1. The results obtained indicated that, essentially, dynamic recovery (DRV) was the dominant softening mechanism in the case of the regimes considered. An analysis based on transmission electron microscopy (TEM) and the assessment of the mechanical behavior of the solution-heat-treated Ti-5V-5Mo-5Cr-4Al alloy revealed that dynamic precipitation (DPN) only took place at a strain rate of 0.001 s−1 and at temperatures of 450 °C and 500 °C. Void coalescence occurred upon an increase in the deformation temperature and a decrease in the strain rate due to a higher rate of diffusion and the provision of sufficient time for growth, respectively. The results obtained in the present study pave the way for the robust processing of this novel β titanium alloy. Depending on the deformation parameters, the deformation characteristics can be governed by either DRV (at moderate temperatures) or DPN (at moderate temperatures and at low rates of deformation).
KW - beta titanium
KW - dynamic precipitation
KW - dynamic recovery
KW - elevated temperature
KW - forming
KW - fracture morphology
KW - mechanical behavior
KW - Ti-5V-5Mo-5Cr-4Al alloy
UR - http://www.scopus.com/inward/record.url?scp=85149211280&partnerID=8YFLogxK
U2 - 10.3390/cryst13020269
DO - 10.3390/cryst13020269
M3 - Article
AN - SCOPUS:85149211280
VL - 13
JO - CRYSTALS
JF - CRYSTALS
SN - 2073-4352
IS - 2
M1 - 269
ER -