Details
Titel in Übersetzung | An integrative geodetic-gravimetrical approach for investigation of subrosion in the sinkhole area of Hamburg-Flottbek - Surface deformation and mass redistribution |
---|---|
Originalsprache | Deutsch |
Seiten (von - bis) | 244-254 |
Seitenumfang | 11 |
Fachzeitschrift | AVN Allgemeine Vermessungs-Nachrichten |
Jahrgang | 125 |
Ausgabenummer | 7 |
Publikationsstatus | Veröffentlicht - 1 Jan. 2018 |
Abstract
Sinkholes occur due to leaching of soluble rocks generating subsidence at the surface. Their hazard potential is large, especially in urban areas. In the joint research project SIMULTAN (Sinkhole Instability: integrated MULTi-scale monitoring and ANalysis) the investigation and surveillance of sinkhole areas by methods of geophysics, petrophysics, applied geodesy, and hydrology aims at contributing to an early recognition system of instability, and in combination with modeling, at improving the understanding of subrosion processes. We focus on a region in the city of Hamburg where the subsidence areas Wobbe- See and Flottbek-Markt are located. Subsidence rates of about 1 mm/a are presumed to be caused by dissolution related to Othmarschen-Langenfelde Diapir. Following an integrative geodetic-gravimetric approach, surface deformation and mass transfer due to subrosion are observed since 01/2016 by repeated levelling and gravimetry campaigns. By tying the relative methods to a superior reference system, large-scale stability control is enabled. A local, relative GNSS network is linked via SAPOS to superior reference systems (ETRS89 and DHHN2016). Concerning gravity, annual absolute measurements are realized. First results regarding deformation indicate a long-term trend to subsidence in Wobbe-See and at Flottbek- Markt. Can we detect potential mass changes in urban areas? This is investigated by high-precision gravity measurement: Reproducible and significant temporal variations of gravity differences (std. dev. ±10 nm/s2) are comprising hydrological induced seasonal variations of several tens of nm/s2, due to local conditions. The correlation with local hydrology is obvious. The intended correction of these hydrological effects will allow to separate possibly hidden effects of mass redistribution caused by dissolution and sinkhole development.
Schlagwörter
- Geo-monitoring measurements, Geophysics, GNSS, Gravimetry, Mass redistribution, Sinkhole, Temporal changes
ASJC Scopus Sachgebiete
- Sozialwissenschaften (insg.)
- Geografie, Planung und Entwicklung
- Ingenieurwesen (insg.)
- Tief- und Ingenieurbau
- Erdkunde und Planetologie (insg.)
- Erdkunde und Planetologie (sonstige)
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: AVN Allgemeine Vermessungs-Nachrichten, Jahrgang 125, Nr. 7, 01.01.2018, S. 244-254.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Ein integrativer geodätisch-gravimetrischer Ansatz zur Erkundung von Subrosion im Erdfallgebiet Hamburg-Flottbek - Oberflächendeformation und Massentransfer
AU - Weise, Adelheid
AU - Kersten, Tobias
AU - Timmen, Ludger
AU - Gabriel, Gerald
AU - Schön, Steffen
AU - Vogel, Detlef
N1 - DANK: Das Projekt SIMULTAN wird vom Bundesministerium für Bildung und Forschung (BMBF) im Sonderprogramm Geotechnologien (Förderkennzeichen 03G0843A) gefördert. Wir danken allen beteiligten technischen Mitarbeitern des LIAG (Nivellement und Gravimetrie) sowie Studierenden der Leibniz-Universität (IfE) für die Unterstützung während der fünf GNSS-Messkampagnen. Weiterhin sei an dieser Stelle ein besonderer Dank an die Abteilung MEA2 des Deutschen Elektronen-Synchrotrons (DESY) unter Leitung von Dr.- Ing. Johannes Prenting und der Landesvermessung Niedersachsen sowie Hamburg für die gute Kooperation ausgesprochen. Die Autoren bedanken sich ebenfalls beim CODE-Analysezentrum für die Verfügbarkeit präziser GNSS-Produkte.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Sinkholes occur due to leaching of soluble rocks generating subsidence at the surface. Their hazard potential is large, especially in urban areas. In the joint research project SIMULTAN (Sinkhole Instability: integrated MULTi-scale monitoring and ANalysis) the investigation and surveillance of sinkhole areas by methods of geophysics, petrophysics, applied geodesy, and hydrology aims at contributing to an early recognition system of instability, and in combination with modeling, at improving the understanding of subrosion processes. We focus on a region in the city of Hamburg where the subsidence areas Wobbe- See and Flottbek-Markt are located. Subsidence rates of about 1 mm/a are presumed to be caused by dissolution related to Othmarschen-Langenfelde Diapir. Following an integrative geodetic-gravimetric approach, surface deformation and mass transfer due to subrosion are observed since 01/2016 by repeated levelling and gravimetry campaigns. By tying the relative methods to a superior reference system, large-scale stability control is enabled. A local, relative GNSS network is linked via SAPOS to superior reference systems (ETRS89 and DHHN2016). Concerning gravity, annual absolute measurements are realized. First results regarding deformation indicate a long-term trend to subsidence in Wobbe-See and at Flottbek- Markt. Can we detect potential mass changes in urban areas? This is investigated by high-precision gravity measurement: Reproducible and significant temporal variations of gravity differences (std. dev. ±10 nm/s2) are comprising hydrological induced seasonal variations of several tens of nm/s2, due to local conditions. The correlation with local hydrology is obvious. The intended correction of these hydrological effects will allow to separate possibly hidden effects of mass redistribution caused by dissolution and sinkhole development.
AB - Sinkholes occur due to leaching of soluble rocks generating subsidence at the surface. Their hazard potential is large, especially in urban areas. In the joint research project SIMULTAN (Sinkhole Instability: integrated MULTi-scale monitoring and ANalysis) the investigation and surveillance of sinkhole areas by methods of geophysics, petrophysics, applied geodesy, and hydrology aims at contributing to an early recognition system of instability, and in combination with modeling, at improving the understanding of subrosion processes. We focus on a region in the city of Hamburg where the subsidence areas Wobbe- See and Flottbek-Markt are located. Subsidence rates of about 1 mm/a are presumed to be caused by dissolution related to Othmarschen-Langenfelde Diapir. Following an integrative geodetic-gravimetric approach, surface deformation and mass transfer due to subrosion are observed since 01/2016 by repeated levelling and gravimetry campaigns. By tying the relative methods to a superior reference system, large-scale stability control is enabled. A local, relative GNSS network is linked via SAPOS to superior reference systems (ETRS89 and DHHN2016). Concerning gravity, annual absolute measurements are realized. First results regarding deformation indicate a long-term trend to subsidence in Wobbe-See and at Flottbek- Markt. Can we detect potential mass changes in urban areas? This is investigated by high-precision gravity measurement: Reproducible and significant temporal variations of gravity differences (std. dev. ±10 nm/s2) are comprising hydrological induced seasonal variations of several tens of nm/s2, due to local conditions. The correlation with local hydrology is obvious. The intended correction of these hydrological effects will allow to separate possibly hidden effects of mass redistribution caused by dissolution and sinkhole development.
KW - Geo-monitoring measurements
KW - Geophysics
KW - GNSS
KW - Gravimetry
KW - Mass redistribution
KW - Sinkhole
KW - Temporal changes
UR - http://www.scopus.com/inward/record.url?scp=85049390979&partnerID=8YFLogxK
M3 - Artikel
AN - SCOPUS:85049390979
VL - 125
SP - 244
EP - 254
JO - AVN Allgemeine Vermessungs-Nachrichten
JF - AVN Allgemeine Vermessungs-Nachrichten
SN - 0002-5968
IS - 7
ER -