Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 683-693 |
Seitenumfang | 11 |
Fachzeitschrift | Izvestiya mathematics |
Jahrgang | 84 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - Aug. 2020 |
Abstract
There is a standard approach to calculate the cohomology of torus-invariant sheaves Ⅎ on a toric variety via the simplicial cohomology of the associated subsets V(Ⅎ) of the space Nℝ of 1-parameter subgroups of the torus. For a line bundle Ⅎ represented by a formal difference Δ+ - Δ- of polyhedra in the character space Mℝ, [1] contains a simpler formula for the cohomology of Ⅎ, replacing V(Ⅎ) by the set-theoretic difference Δ-\Δ+. Here, we provide a short and direct proof of this formula.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Izvestiya mathematics, Jahrgang 84, Nr. 4, 08.2020, S. 683-693.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Displaying the cohomology of toric line bundles
AU - Altmann, K.
AU - Ploog, David
PY - 2020/8
Y1 - 2020/8
N2 - There is a standard approach to calculate the cohomology of torus-invariant sheaves Ⅎ on a toric variety via the simplicial cohomology of the associated subsets V(Ⅎ) of the space Nℝ of 1-parameter subgroups of the torus. For a line bundle Ⅎ represented by a formal difference Δ+ - Δ- of polyhedra in the character space Mℝ, [1] contains a simpler formula for the cohomology of Ⅎ, replacing V(Ⅎ) by the set-theoretic difference Δ-\Δ+. Here, we provide a short and direct proof of this formula.
AB - There is a standard approach to calculate the cohomology of torus-invariant sheaves Ⅎ on a toric variety via the simplicial cohomology of the associated subsets V(Ⅎ) of the space Nℝ of 1-parameter subgroups of the torus. For a line bundle Ⅎ represented by a formal difference Δ+ - Δ- of polyhedra in the character space Mℝ, [1] contains a simpler formula for the cohomology of Ⅎ, replacing V(Ⅎ) by the set-theoretic difference Δ-\Δ+. Here, we provide a short and direct proof of this formula.
KW - Cartier divisor
KW - lattice
KW - line bundle
KW - polytope
KW - sheaf cohomology
KW - toric variety
UR - http://www.scopus.com/inward/record.url?scp=85092255301&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1903.08009
DO - 10.48550/arXiv.1903.08009
M3 - Article
AN - SCOPUS:85092255301
VL - 84
SP - 683
EP - 693
JO - Izvestiya mathematics
JF - Izvestiya mathematics
SN - 1064-5632
IS - 4
ER -