Displaying the cohomology of toric line bundles

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • K. Altmann
  • David Ploog

Organisationseinheiten

Externe Organisationen

  • Freie Universität Berlin (FU Berlin)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)683-693
Seitenumfang11
FachzeitschriftIzvestiya mathematics
Jahrgang84
Ausgabenummer4
PublikationsstatusVeröffentlicht - Aug. 2020

Abstract

There is a standard approach to calculate the cohomology of torus-invariant sheaves Ⅎ on a toric variety via the simplicial cohomology of the associated subsets V(Ⅎ) of the space Nℝ of 1-parameter subgroups of the torus. For a line bundle Ⅎ represented by a formal difference Δ+ - Δ- of polyhedra in the character space Mℝ, [1] contains a simpler formula for the cohomology of Ⅎ, replacing V(Ⅎ) by the set-theoretic difference Δ-\Δ+. Here, we provide a short and direct proof of this formula.

ASJC Scopus Sachgebiete

Zitieren

Displaying the cohomology of toric line bundles. / Altmann, K.; Ploog, David.
in: Izvestiya mathematics, Jahrgang 84, Nr. 4, 08.2020, S. 683-693.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Altmann K, Ploog D. Displaying the cohomology of toric line bundles. Izvestiya mathematics. 2020 Aug;84(4):683-693. doi: 10.48550/arXiv.1903.08009, 10.1070/IM8948
Altmann, K. ; Ploog, David. / Displaying the cohomology of toric line bundles. in: Izvestiya mathematics. 2020 ; Jahrgang 84, Nr. 4. S. 683-693.
Download
@article{2ef94a8a58ba4a4a8bed87a97a7c0efd,
title = "Displaying the cohomology of toric line bundles",
abstract = "There is a standard approach to calculate the cohomology of torus-invariant sheaves Ⅎ on a toric variety via the simplicial cohomology of the associated subsets V(Ⅎ) of the space Nℝ of 1-parameter subgroups of the torus. For a line bundle Ⅎ represented by a formal difference Δ+ - Δ- of polyhedra in the character space Mℝ, [1] contains a simpler formula for the cohomology of Ⅎ, replacing V(Ⅎ) by the set-theoretic difference Δ-\Δ+. Here, we provide a short and direct proof of this formula.",
keywords = "Cartier divisor, lattice, line bundle, polytope, sheaf cohomology, toric variety",
author = "K. Altmann and David Ploog",
year = "2020",
month = aug,
doi = "10.48550/arXiv.1903.08009",
language = "English",
volume = "84",
pages = "683--693",
journal = "Izvestiya mathematics",
issn = "1064-5632",
publisher = "IOP Publishing Ltd.",
number = "4",

}

Download

TY - JOUR

T1 - Displaying the cohomology of toric line bundles

AU - Altmann, K.

AU - Ploog, David

PY - 2020/8

Y1 - 2020/8

N2 - There is a standard approach to calculate the cohomology of torus-invariant sheaves Ⅎ on a toric variety via the simplicial cohomology of the associated subsets V(Ⅎ) of the space Nℝ of 1-parameter subgroups of the torus. For a line bundle Ⅎ represented by a formal difference Δ+ - Δ- of polyhedra in the character space Mℝ, [1] contains a simpler formula for the cohomology of Ⅎ, replacing V(Ⅎ) by the set-theoretic difference Δ-\Δ+. Here, we provide a short and direct proof of this formula.

AB - There is a standard approach to calculate the cohomology of torus-invariant sheaves Ⅎ on a toric variety via the simplicial cohomology of the associated subsets V(Ⅎ) of the space Nℝ of 1-parameter subgroups of the torus. For a line bundle Ⅎ represented by a formal difference Δ+ - Δ- of polyhedra in the character space Mℝ, [1] contains a simpler formula for the cohomology of Ⅎ, replacing V(Ⅎ) by the set-theoretic difference Δ-\Δ+. Here, we provide a short and direct proof of this formula.

KW - Cartier divisor

KW - lattice

KW - line bundle

KW - polytope

KW - sheaf cohomology

KW - toric variety

UR - http://www.scopus.com/inward/record.url?scp=85092255301&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1903.08009

DO - 10.48550/arXiv.1903.08009

M3 - Article

AN - SCOPUS:85092255301

VL - 84

SP - 683

EP - 693

JO - Izvestiya mathematics

JF - Izvestiya mathematics

SN - 1064-5632

IS - 4

ER -