Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 515-526 |
Seitenumfang | 12 |
Fachzeitschrift | Communications in algebra |
Jahrgang | 35 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - Feb. 2007 |
Extern publiziert | Ja |
Abstract
We give a complete derived equivalence classification of all nonstandard representation-infinite domestic selfinjective algebras over an algebraically closed field. As a consequence, a complete stable equivalence classification of these algebras is obtained.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Algebra und Zahlentheorie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Communications in algebra, Jahrgang 35, Nr. 2, 02.2007, S. 515-526.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Derived equivalence classification of nonstandard selfinjective algebras of domestic type
AU - Bocian, Rafał
AU - Skowroński, Andrzej
AU - Holm, Thorsten
N1 - Funding Information: Rafał Bocian and Andrzej Skowroński acknowledge support from the Polish Scientific Grant KBN No. 1 P03A 018 27.
PY - 2007/2
Y1 - 2007/2
N2 - We give a complete derived equivalence classification of all nonstandard representation-infinite domestic selfinjective algebras over an algebraically closed field. As a consequence, a complete stable equivalence classification of these algebras is obtained.
AB - We give a complete derived equivalence classification of all nonstandard representation-infinite domestic selfinjective algebras over an algebraically closed field. As a consequence, a complete stable equivalence classification of these algebras is obtained.
KW - Brauer graph algebra
KW - Derived equivalence
KW - Domestic type
KW - Selfinjective algebra
KW - Stable equivalence
UR - http://www.scopus.com/inward/record.url?scp=33847629959&partnerID=8YFLogxK
U2 - 10.1080/00927870601052521
DO - 10.1080/00927870601052521
M3 - Article
AN - SCOPUS:33847629959
VL - 35
SP - 515
EP - 526
JO - Communications in algebra
JF - Communications in algebra
SN - 0092-7872
IS - 2
ER -