Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 024010 |
Fachzeitschrift | Quantum Science and Technology |
Jahrgang | 6 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 5 März 2021 |
Abstract
We demonstrate a microfabricated surface-electrode ion trap that is applicable as a nanofriction emulator and studies of many-body dynamics of interacting systems. The trap enables both single-well and double-well trapping potentials in the radial direction, where the distance between the two potential wells can be adjusted by the applied RF voltage. In the double-well configuration, parallel ion strings can be formed, which is a suitable system for the emulation of the Frenkel-Kontorova (FK) model. We derive the condition under which the trap functions as an FK model emulator. The trap is designed so that the Coulomb interaction between two ion strings becomes significant. We report on the microfabrication process for such downsized trap electrodes and experimental results of single-well and double-well operation with calcium ions. With the trap demonstrated in this work we can create atomically accessible, self-assembled Coulomb systems with a wide tuning range of the corrugation parameter in the FK model. This makes it a promising system for quantum simulations, but also for the study of nanofriction in one and higher dimensional systems.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Atom- und Molekularphysik sowie Optik
- Werkstoffwissenschaften (insg.)
- Werkstoffwissenschaften (sonstige)
- Physik und Astronomie (insg.)
- Physik und Astronomie (sonstige)
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Quantum Science and Technology, Jahrgang 6, Nr. 2, 024010, 05.03.2021.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Creation of double-well potentials in a surface-electrode trap towards a nanofriction model emulator
AU - Tanaka, U.
AU - Nakamura, M.
AU - Hayasaka, K.
AU - Bautista-Salvador, A.
AU - Ospelkaus, C.
AU - Mehlstäubler, T. E.
PY - 2021/3/5
Y1 - 2021/3/5
N2 - We demonstrate a microfabricated surface-electrode ion trap that is applicable as a nanofriction emulator and studies of many-body dynamics of interacting systems. The trap enables both single-well and double-well trapping potentials in the radial direction, where the distance between the two potential wells can be adjusted by the applied RF voltage. In the double-well configuration, parallel ion strings can be formed, which is a suitable system for the emulation of the Frenkel-Kontorova (FK) model. We derive the condition under which the trap functions as an FK model emulator. The trap is designed so that the Coulomb interaction between two ion strings becomes significant. We report on the microfabrication process for such downsized trap electrodes and experimental results of single-well and double-well operation with calcium ions. With the trap demonstrated in this work we can create atomically accessible, self-assembled Coulomb systems with a wide tuning range of the corrugation parameter in the FK model. This makes it a promising system for quantum simulations, but also for the study of nanofriction in one and higher dimensional systems.
AB - We demonstrate a microfabricated surface-electrode ion trap that is applicable as a nanofriction emulator and studies of many-body dynamics of interacting systems. The trap enables both single-well and double-well trapping potentials in the radial direction, where the distance between the two potential wells can be adjusted by the applied RF voltage. In the double-well configuration, parallel ion strings can be formed, which is a suitable system for the emulation of the Frenkel-Kontorova (FK) model. We derive the condition under which the trap functions as an FK model emulator. The trap is designed so that the Coulomb interaction between two ion strings becomes significant. We report on the microfabrication process for such downsized trap electrodes and experimental results of single-well and double-well operation with calcium ions. With the trap demonstrated in this work we can create atomically accessible, self-assembled Coulomb systems with a wide tuning range of the corrugation parameter in the FK model. This makes it a promising system for quantum simulations, but also for the study of nanofriction in one and higher dimensional systems.
KW - Frenkel-Kontorova model
KW - ion trap
KW - microfabricated surface-electrode trap
KW - nanofriction model
KW - two-dimensional ion array
UR - http://www.scopus.com/inward/record.url?scp=85103490109&partnerID=8YFLogxK
U2 - 10.1088/2058-9565/abe51a
DO - 10.1088/2058-9565/abe51a
M3 - Article
AN - SCOPUS:85103490109
VL - 6
JO - Quantum Science and Technology
JF - Quantum Science and Technology
IS - 2
M1 - 024010
ER -