Details
Originalsprache | Englisch |
---|---|
Publikationsstatus | Elektronisch veröffentlicht (E-Pub) - 15 Apr. 2024 |
Abstract
Fachgebiet (basierend auf ÖFOS 2012)
- NATURWISSENSCHAFTEN
- Mathematik
- Mathematik
- Kombinatorik
- NATURWISSENSCHAFTEN
- Mathematik
- Mathematik
- Algebra
- NATURWISSENSCHAFTEN
- Mathematik
- Mathematik
- Graphentheorie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
2024.
Publikation: Arbeitspapier/Preprint › Preprint
}
TY - UNPB
T1 - Calculating entries of unitary $SL_3$-friezes
AU - Surmann, Lucas
PY - 2024/4/15
Y1 - 2024/4/15
N2 - In this article we consider tame $ SL_3 $-friezes that arise by specializing a cluster of Pl\"ucker variables in the coordinate ring of the Grassmannian $ \mathscr{G}(3,n) $ to $ 1 $. We show how to calculate arbitrary entries of such friezes from the cluster in question. Let $ \mathscr{F} $ be such a cluster. We study the set $ \mathscr{F}_x $ of cluster variables in $ \mathscr{F} $ that share a given index $ x $ and derive a structure Theorem for $ \mathscr{F}_x $. These sets prove central to calculating the first and last non-trivial rows of the frieze. After that, simple recursive formulas can be used to calculate all remaining entries.
AB - In this article we consider tame $ SL_3 $-friezes that arise by specializing a cluster of Pl\"ucker variables in the coordinate ring of the Grassmannian $ \mathscr{G}(3,n) $ to $ 1 $. We show how to calculate arbitrary entries of such friezes from the cluster in question. Let $ \mathscr{F} $ be such a cluster. We study the set $ \mathscr{F}_x $ of cluster variables in $ \mathscr{F} $ that share a given index $ x $ and derive a structure Theorem for $ \mathscr{F}_x $. These sets prove central to calculating the first and last non-trivial rows of the frieze. After that, simple recursive formulas can be used to calculate all remaining entries.
KW - math.CO
KW - 13F60, 14M15, 05C99, 05E99, 51M20
M3 - Preprint
BT - Calculating entries of unitary $SL_3$-friezes
ER -