Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 199-210 |
Seitenumfang | 12 |
Fachzeitschrift | Progress in Photovoltaics: Research and Applications |
Jahrgang | 15 |
Ausgabenummer | 3 |
Frühes Online-Datum | 20 Sept. 2006 |
Publikationsstatus | Veröffentlicht - Mai 2007 |
Extern publiziert | Ja |
Abstract
The in situ formation of an emitter in monocrystalline silicon thin-film solar cells by solid-state diffusion of dopants from the growth substrate during epitaxy is demonstrated. This approach, that we denote autodiffusion, combines the epitaxy and the diffusion into one single process. Layer-transfer with porous silicon (PSI process) is used to fabricate n-type silicon thin-film solar cells. The cells feature a boron emitter on the cell rear side that is formed by autodiffusion. The sheet resistance of this autodiffused emitter is 330 Ω/□- An independently confirmed conversion efficiency of (14.5 ± 0.4)% with a high short circuit current density of (33.3 ± 0.8) mA/cm2 is achieved for a 2 × 2 cm2 large cell with a thickness of (24 ± 1) μm. Transferred n-type silicon thin films made from the same run as the cells show effective carrier lifetimes exceeding 13 μs. From these samples a bulk diffusion ength L > 111 μm is deduced. Amorphous silicon is used to passivate the rear surface of these samples after the layer-transfer resulting in a surface recombination velocity lower than 38cm/s.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
- Energie (insg.)
- Erneuerbare Energien, Nachhaltigkeit und Umwelt
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Progress in Photovoltaics: Research and Applications, Jahrgang 15, Nr. 3, 05.2007, S. 199-210.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Autodiffusion
T2 - A novel method for emitter formation in crystalline silicon thin-film solar cells
AU - Wolf, A.
AU - Terheiden, B.
AU - Brendel, R.
PY - 2007/5
Y1 - 2007/5
N2 - The in situ formation of an emitter in monocrystalline silicon thin-film solar cells by solid-state diffusion of dopants from the growth substrate during epitaxy is demonstrated. This approach, that we denote autodiffusion, combines the epitaxy and the diffusion into one single process. Layer-transfer with porous silicon (PSI process) is used to fabricate n-type silicon thin-film solar cells. The cells feature a boron emitter on the cell rear side that is formed by autodiffusion. The sheet resistance of this autodiffused emitter is 330 Ω/□- An independently confirmed conversion efficiency of (14.5 ± 0.4)% with a high short circuit current density of (33.3 ± 0.8) mA/cm2 is achieved for a 2 × 2 cm2 large cell with a thickness of (24 ± 1) μm. Transferred n-type silicon thin films made from the same run as the cells show effective carrier lifetimes exceeding 13 μs. From these samples a bulk diffusion ength L > 111 μm is deduced. Amorphous silicon is used to passivate the rear surface of these samples after the layer-transfer resulting in a surface recombination velocity lower than 38cm/s.
AB - The in situ formation of an emitter in monocrystalline silicon thin-film solar cells by solid-state diffusion of dopants from the growth substrate during epitaxy is demonstrated. This approach, that we denote autodiffusion, combines the epitaxy and the diffusion into one single process. Layer-transfer with porous silicon (PSI process) is used to fabricate n-type silicon thin-film solar cells. The cells feature a boron emitter on the cell rear side that is formed by autodiffusion. The sheet resistance of this autodiffused emitter is 330 Ω/□- An independently confirmed conversion efficiency of (14.5 ± 0.4)% with a high short circuit current density of (33.3 ± 0.8) mA/cm2 is achieved for a 2 × 2 cm2 large cell with a thickness of (24 ± 1) μm. Transferred n-type silicon thin films made from the same run as the cells show effective carrier lifetimes exceeding 13 μs. From these samples a bulk diffusion ength L > 111 μm is deduced. Amorphous silicon is used to passivate the rear surface of these samples after the layer-transfer resulting in a surface recombination velocity lower than 38cm/s.
KW - Autodoping-Porous silicon (PSI) process
KW - Crystalline silicon thin-film solar cell
KW - Emitter diffusion
KW - Solid-state diffusion
UR - http://www.scopus.com/inward/record.url?scp=34247167163&partnerID=8YFLogxK
U2 - 10.1002/pip.727
DO - 10.1002/pip.727
M3 - Article
AN - SCOPUS:34247167163
VL - 15
SP - 199
EP - 210
JO - Progress in Photovoltaics: Research and Applications
JF - Progress in Photovoltaics: Research and Applications
SN - 1062-7995
IS - 3
ER -