Asymmetric structuring of thermoelectric ceramics using electrospun nanoribbons

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades2 Dez. 2024
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 16 Dez. 2024

Abstract

Die meisten Oxide sind aufgrund ihrer außergewöhnlichen Stabilität in oxidativen Atmosphären vielversprechend. Sie haben ein erhebliches Potenzial zur Verbesserung der thermoelektrischen Energieumwandlung durch thermoelektrische Generatoren (TEGs) bei hohen Temperaturen in der Luft. Sie können ungenutzte Wärmeenergie zurückgewinnen, die in der Industrie und im Verkehrswesen weit verbreitet ist, und so zu nachhaltigen Energiequellen beitragen. Das Oxidmaterial [Ca2CoO3–δ]0.62[CoO2] (CCO) wurde aufgrund seiner hohen chemischen und thermischen Stabilität in Luft und seiner hervorragenden thermoelektrischen (TE) Eigenschaften eingehend untersucht. NaxCoO2 (NCO) bietet eine noch bessere TE-Leistung, zersetzt sich jedoch bei hohen Temperaturen an der Luft schnell, was seine langfristige Stabilität beeinträchtigt. Um die hervorragenden TE Eigenschaften von NCO bei hohen Temperaturen zu nutzen, wurden Stabilisierungsmethoden entwickelt, darunter die Integration von NCO in eine thermisch stabile Matrix auf CCO-Basis. Durch die asymmetrische Strukturierung von NCO auf der Nanoskala innerhalb des TE-Keramikkomposits wurde eine Schutzbarriere geschaffen, die die Eigenschaften des Materials unter extremen Bedingungen bewahrt und seine Verwendung bei hohen Temperaturen gewährleistet. NCO und CCO haben geschichtete Kristallstrukturen, die zu anisotropen Transporteigenschaften führen. Um die TE-Leistung von polykristallinen Keramiken deutlich zu verbessern, ist eine präzise Texturierung entscheidend, um die Kristallkörner so auszurichten, dass sie sich den außergewöhnlichen Eigenschaften von Einkristallen annähern. Die Nanostrukturierung von Keramiken erhöht auch die Anzahl der Korngrenzen, was die Wärmeleitfähigkeit verringert. Um diese Eigenschaften zu erreichen, wurde das Elektrospinnen von Nanobändern eingesetzt. Zunächst wurden gemischte Matten aus CCO Nanofasern und Nanobändern zu porösen Keramiken verdichtet. Das Elektrospinnen wurde optimiert, um Matten aus 100% flachen CCO-Nanobändern herzustellen, was zu texturierten Keramiken führte. Ein neuartiger mehrstufiger Sinterprozess, der Spark Plasma-Sintern und Spark Plasma-Texturierung (SPS+SPT) umfasst, erhöhte die Texturierung und Verdichtung der Keramik, wodurch ihre thermoelektrischen Eigenschaften verbessert wurden. Die Kombination von SPS+SPT mit elektrogesponnenen Nanobändern, die eine effiziente Packung ermöglichte, führte zu dichten Keramiken mit ausgezeichneter Kornorientierung. Das Co-Elektrospinnen von NCO-CCO Nanobändern ergab ein asymmetrisch strukturiertes Keramikkomposit mit hervorragender Stabilität und TE-Eigenschaften. Eine andere Methode integrierte mikrometergroße NCO-Templat-Partikel in ein Na, Bi, Tb dotiertes Pulver auf CCO-Basis und bildete eine dreiphasige Kompositmatrix. Dadurch wurde die NCO-Phase bei hohen Temperaturen stabilisiert und die TE-Leistung verbessert.

Zitieren

Asymmetric structuring of thermoelectric ceramics using electrospun nanoribbons. / Kruppa, Katharina.
Hannover, 2024. 228 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Kruppa, K 2024, 'Asymmetric structuring of thermoelectric ceramics using electrospun nanoribbons', Doctor rerum naturalium, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/18253
Kruppa, K. (2024). Asymmetric structuring of thermoelectric ceramics using electrospun nanoribbons. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/18253
Kruppa K. Asymmetric structuring of thermoelectric ceramics using electrospun nanoribbons. Hannover, 2024. 228 S. doi: 10.15488/18253
Download
@phdthesis{ce15ac69fb7b48fe827abb3c7878b627,
title = "Asymmetric structuring of thermoelectric ceramics using electrospun nanoribbons",
abstract = "Most oxides are promising due to their exceptional stability in oxidative atmospheres. They have significant potential to enhance thermoelectric energy conversion through thermoelectric generators (TEGs) at high temperatures in air. They can recover unused thermal energy, prevalent in industry and transportation, thus contributing to sustainable energy sources. The oxide material [Ca2CoO3–δ]0.62[CoO2] (CCO) is extensively studied due to its high chemical and thermal stability in air and excellent thermoelectric (TE) properties. NaxCoO2 (NCO) offers even better TE performance but degrades quickly at high temperatures in air, impacting its long-term stability. To utilize NCO{\textquoteright}s outstanding TE properties at high temperatures, stabilization methods were developed, including integrating NCO into a thermally stable CCO-based matrix. Asymmetrically structuring NCO on the nanoscale within the TE ceramic composite created a protective barrier that preserved the materials properties under extreme conditions and ensured its use at high temperatures. NCO and CCO have layered crystal structures leading to anisotropic transport properties. To significantly enhance the TE performance of polycrystalline ceramics, precise texturing is crucial for aligning crystal grains to approximate the exceptional properties of single crystals. Nanostructuring ceramics also increases the amount of grain boundaries, reducing thermal conductivity. Electrospinning of nanoribbons was used to achieve these features. Initially, mixed CCO nanofiber/nanoribbon mats were compacted into porous ceramics. Electrospinning was optimized to produce 100% flat CCO nanoribbon mats, resulting in textured ceramics. A novel multi-stage sintering process, including spark plasma sintering and spark plasma texturing (SPS+SPT), improved texturing and densification of the ceramic, enhancing its thermoelectric properties. Combining SPS+SPT with electrospun nanoribbons, which allowed efficient packing, resulted in dense ceramics with excellent grain orientation. Co-electrospinning of NCO-CCO nanoribbons produced an asymmetrically structured ceramic composite with excellent stability and TE properties. Another method integrated micrometer-sized NCO template particles into a Na, Bi, Tb doped CCO-based powder, forming a triple-phase composite matrix. This stabilized the NCO phase at high temperatures and improved TE performance.",
author = "Katharina Kruppa",
year = "2024",
month = dec,
day = "16",
doi = "10.15488/18253",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Asymmetric structuring of thermoelectric ceramics using electrospun nanoribbons

AU - Kruppa, Katharina

PY - 2024/12/16

Y1 - 2024/12/16

N2 - Most oxides are promising due to their exceptional stability in oxidative atmospheres. They have significant potential to enhance thermoelectric energy conversion through thermoelectric generators (TEGs) at high temperatures in air. They can recover unused thermal energy, prevalent in industry and transportation, thus contributing to sustainable energy sources. The oxide material [Ca2CoO3–δ]0.62[CoO2] (CCO) is extensively studied due to its high chemical and thermal stability in air and excellent thermoelectric (TE) properties. NaxCoO2 (NCO) offers even better TE performance but degrades quickly at high temperatures in air, impacting its long-term stability. To utilize NCO’s outstanding TE properties at high temperatures, stabilization methods were developed, including integrating NCO into a thermally stable CCO-based matrix. Asymmetrically structuring NCO on the nanoscale within the TE ceramic composite created a protective barrier that preserved the materials properties under extreme conditions and ensured its use at high temperatures. NCO and CCO have layered crystal structures leading to anisotropic transport properties. To significantly enhance the TE performance of polycrystalline ceramics, precise texturing is crucial for aligning crystal grains to approximate the exceptional properties of single crystals. Nanostructuring ceramics also increases the amount of grain boundaries, reducing thermal conductivity. Electrospinning of nanoribbons was used to achieve these features. Initially, mixed CCO nanofiber/nanoribbon mats were compacted into porous ceramics. Electrospinning was optimized to produce 100% flat CCO nanoribbon mats, resulting in textured ceramics. A novel multi-stage sintering process, including spark plasma sintering and spark plasma texturing (SPS+SPT), improved texturing and densification of the ceramic, enhancing its thermoelectric properties. Combining SPS+SPT with electrospun nanoribbons, which allowed efficient packing, resulted in dense ceramics with excellent grain orientation. Co-electrospinning of NCO-CCO nanoribbons produced an asymmetrically structured ceramic composite with excellent stability and TE properties. Another method integrated micrometer-sized NCO template particles into a Na, Bi, Tb doped CCO-based powder, forming a triple-phase composite matrix. This stabilized the NCO phase at high temperatures and improved TE performance.

AB - Most oxides are promising due to their exceptional stability in oxidative atmospheres. They have significant potential to enhance thermoelectric energy conversion through thermoelectric generators (TEGs) at high temperatures in air. They can recover unused thermal energy, prevalent in industry and transportation, thus contributing to sustainable energy sources. The oxide material [Ca2CoO3–δ]0.62[CoO2] (CCO) is extensively studied due to its high chemical and thermal stability in air and excellent thermoelectric (TE) properties. NaxCoO2 (NCO) offers even better TE performance but degrades quickly at high temperatures in air, impacting its long-term stability. To utilize NCO’s outstanding TE properties at high temperatures, stabilization methods were developed, including integrating NCO into a thermally stable CCO-based matrix. Asymmetrically structuring NCO on the nanoscale within the TE ceramic composite created a protective barrier that preserved the materials properties under extreme conditions and ensured its use at high temperatures. NCO and CCO have layered crystal structures leading to anisotropic transport properties. To significantly enhance the TE performance of polycrystalline ceramics, precise texturing is crucial for aligning crystal grains to approximate the exceptional properties of single crystals. Nanostructuring ceramics also increases the amount of grain boundaries, reducing thermal conductivity. Electrospinning of nanoribbons was used to achieve these features. Initially, mixed CCO nanofiber/nanoribbon mats were compacted into porous ceramics. Electrospinning was optimized to produce 100% flat CCO nanoribbon mats, resulting in textured ceramics. A novel multi-stage sintering process, including spark plasma sintering and spark plasma texturing (SPS+SPT), improved texturing and densification of the ceramic, enhancing its thermoelectric properties. Combining SPS+SPT with electrospun nanoribbons, which allowed efficient packing, resulted in dense ceramics with excellent grain orientation. Co-electrospinning of NCO-CCO nanoribbons produced an asymmetrically structured ceramic composite with excellent stability and TE properties. Another method integrated micrometer-sized NCO template particles into a Na, Bi, Tb doped CCO-based powder, forming a triple-phase composite matrix. This stabilized the NCO phase at high temperatures and improved TE performance.

U2 - 10.15488/18253

DO - 10.15488/18253

M3 - Doctoral thesis

CY - Hannover

ER -