Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 149-163 |
Seitenumfang | 15 |
Fachzeitschrift | ZFV - Zeitschrift fur Geodasie, Geoinformation und Landmanagement |
Jahrgang | 133 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 30 Juni 2008 |
Abstract
Using absolute gravimetry, geodetic networks can be surveyed to realize a homogeneous gravity standard of regional to global extent and to monitor time dependent variations in the Earth's gravity field. With the receipt of the transportable free-fall gravimeter JILAg-3 at the Institut für Erdmessung (IfE, Leibniz Universität Hannover) in 1986, projects were initiated with a main objective to improve national and international gravimetric networks. Deficiencies in the definition of the absolute datum (gravimetric scale and level) could be overcome. As a second goal, absolute gravity determinations were performed to support the geodynamic research in regions where geophysical phenomena deform the Earth's surface. Presently, the FG5 gravimeter is the state-of-the-art in the measurements of absolute gravity. With the high measuring accuracy, new applications have been risen, e.g. the monitoring of environmental changes. For IfE, the FG5-220 is the second absolute meter obtained in 2002, and is the follow-up of the JILAg-3. Comparisons of results with both absolute gravimeters among themselves and with other instruments show that the results from both instruments are well adjusted to the international gravity standard. But a bias of +0.09 μm/s2 has to be considered for the JILAg-3 measurements when comparing with FG5-220 results. As a case study for an interdisciplinary long-term research, a Danish-German cooperation is described. Besides the establishment of a national gravimetric reference, a strong geophysical background characterizes the joint projects performed since 1986.
ASJC Scopus Sachgebiete
- Erdkunde und Planetologie (insg.)
- Allgemeine Erdkunde und Planetologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: ZFV - Zeitschrift fur Geodasie, Geoinformation und Landmanagement, Jahrgang 133, Nr. 3, 30.06.2008, S. 149-163.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Absolute Gravimetry with the Hannover Meters JILAg-3 and FG5-220, and their Deployment in a Danish-German Cooperation
AU - Timmen, Ludger
AU - Gitlein, Olga
AU - Müller, Jürgen
AU - Strykowski, Gabriel
AU - Forsberg, Rene
PY - 2008/6/30
Y1 - 2008/6/30
N2 - Using absolute gravimetry, geodetic networks can be surveyed to realize a homogeneous gravity standard of regional to global extent and to monitor time dependent variations in the Earth's gravity field. With the receipt of the transportable free-fall gravimeter JILAg-3 at the Institut für Erdmessung (IfE, Leibniz Universität Hannover) in 1986, projects were initiated with a main objective to improve national and international gravimetric networks. Deficiencies in the definition of the absolute datum (gravimetric scale and level) could be overcome. As a second goal, absolute gravity determinations were performed to support the geodynamic research in regions where geophysical phenomena deform the Earth's surface. Presently, the FG5 gravimeter is the state-of-the-art in the measurements of absolute gravity. With the high measuring accuracy, new applications have been risen, e.g. the monitoring of environmental changes. For IfE, the FG5-220 is the second absolute meter obtained in 2002, and is the follow-up of the JILAg-3. Comparisons of results with both absolute gravimeters among themselves and with other instruments show that the results from both instruments are well adjusted to the international gravity standard. But a bias of +0.09 μm/s2 has to be considered for the JILAg-3 measurements when comparing with FG5-220 results. As a case study for an interdisciplinary long-term research, a Danish-German cooperation is described. Besides the establishment of a national gravimetric reference, a strong geophysical background characterizes the joint projects performed since 1986.
AB - Using absolute gravimetry, geodetic networks can be surveyed to realize a homogeneous gravity standard of regional to global extent and to monitor time dependent variations in the Earth's gravity field. With the receipt of the transportable free-fall gravimeter JILAg-3 at the Institut für Erdmessung (IfE, Leibniz Universität Hannover) in 1986, projects were initiated with a main objective to improve national and international gravimetric networks. Deficiencies in the definition of the absolute datum (gravimetric scale and level) could be overcome. As a second goal, absolute gravity determinations were performed to support the geodynamic research in regions where geophysical phenomena deform the Earth's surface. Presently, the FG5 gravimeter is the state-of-the-art in the measurements of absolute gravity. With the high measuring accuracy, new applications have been risen, e.g. the monitoring of environmental changes. For IfE, the FG5-220 is the second absolute meter obtained in 2002, and is the follow-up of the JILAg-3. Comparisons of results with both absolute gravimeters among themselves and with other instruments show that the results from both instruments are well adjusted to the international gravity standard. But a bias of +0.09 μm/s2 has to be considered for the JILAg-3 measurements when comparing with FG5-220 results. As a case study for an interdisciplinary long-term research, a Danish-German cooperation is described. Besides the establishment of a national gravimetric reference, a strong geophysical background characterizes the joint projects performed since 1986.
UR - http://www.scopus.com/inward/record.url?scp=45749123545&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:45749123545
VL - 133
SP - 149
EP - 163
JO - ZFV - Zeitschrift fur Geodasie, Geoinformation und Landmanagement
JF - ZFV - Zeitschrift fur Geodasie, Geoinformation und Landmanagement
SN - 1618-8950
IS - 3
ER -