A nanoengineered tandem nitroreductase: designing a robust prodrug-activating nanoreactor

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Mariia Zmyslia
  • Michael J. Capper
  • Michael Grimmeisen
  • Kerstin Sartory
  • Benedikt Deuringer
  • Mohamed Abdelsalam
  • Kaiwei Shen
  • Manfred Jung
  • Wolfgang Sippl
  • Hans Georg Koch
  • Laurine Kaul
  • Regine Süss
  • Jesko Köhnke
  • Claudia Jessen-Trefzer

Organisationseinheiten

Externe Organisationen

  • Albert-Ludwigs-Universität Freiburg
  • University of Glasgow
  • Martin-Luther-Universität Halle-Wittenberg
  • Alexandria University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)21-35
Seitenumfang15
FachzeitschriftRSC Chemical Biology
Jahrgang6
Ausgabenummer1
Frühes Online-Datum4 Nov. 2024
PublikationsstatusVeröffentlicht - 4 Nov. 2024

Abstract

Nitroreductases are important enzymes for a variety of applications, including cancer therapy and bioremediation. They often require encapsulation to improve stability and activity. We focus on genetically encoded encapsulation of nitroreductases within protein capsids, like encapsulins. Our study showcases the encapsulation of nitroreductase NfsB as functional dimers within encapsulins, which enhances protein activity and stability in diverse conditions. Mutations within the pore region are beneficial for activity of the encapsulated enzyme, potentially by increasing diffusion rates. Cryogenic electron microscopy reveals the overall architecture of the encapsulated dimeric NfsB within the nanoreactor environment and identifies multiple pore states in the shell. These findings highlight the potential of encapsulins as versatile tools for enhancing enzyme performance across various fields.

ASJC Scopus Sachgebiete

Ziele für nachhaltige Entwicklung

Zitieren

A nanoengineered tandem nitroreductase: designing a robust prodrug-activating nanoreactor. / Zmyslia, Mariia; Capper, Michael J.; Grimmeisen, Michael et al.
in: RSC Chemical Biology, Jahrgang 6, Nr. 1, 04.11.2024, S. 21-35.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Zmyslia, M, Capper, MJ, Grimmeisen, M, Sartory, K, Deuringer, B, Abdelsalam, M, Shen, K, Jung, M, Sippl, W, Koch, HG, Kaul, L, Süss, R, Köhnke, J & Jessen-Trefzer, C 2024, 'A nanoengineered tandem nitroreductase: designing a robust prodrug-activating nanoreactor', RSC Chemical Biology, Jg. 6, Nr. 1, S. 21-35. https://doi.org/10.1039/d4cb00127c
Zmyslia, M., Capper, M. J., Grimmeisen, M., Sartory, K., Deuringer, B., Abdelsalam, M., Shen, K., Jung, M., Sippl, W., Koch, H. G., Kaul, L., Süss, R., Köhnke, J., & Jessen-Trefzer, C. (2024). A nanoengineered tandem nitroreductase: designing a robust prodrug-activating nanoreactor. RSC Chemical Biology, 6(1), 21-35. https://doi.org/10.1039/d4cb00127c
Zmyslia M, Capper MJ, Grimmeisen M, Sartory K, Deuringer B, Abdelsalam M et al. A nanoengineered tandem nitroreductase: designing a robust prodrug-activating nanoreactor. RSC Chemical Biology. 2024 Nov 4;6(1):21-35. Epub 2024 Nov 4. doi: 10.1039/d4cb00127c
Zmyslia, Mariia ; Capper, Michael J. ; Grimmeisen, Michael et al. / A nanoengineered tandem nitroreductase : designing a robust prodrug-activating nanoreactor. in: RSC Chemical Biology. 2024 ; Jahrgang 6, Nr. 1. S. 21-35.
Download
@article{ef5018e980cf482e8d654655561e5bc7,
title = "A nanoengineered tandem nitroreductase: designing a robust prodrug-activating nanoreactor",
abstract = "Nitroreductases are important enzymes for a variety of applications, including cancer therapy and bioremediation. They often require encapsulation to improve stability and activity. We focus on genetically encoded encapsulation of nitroreductases within protein capsids, like encapsulins. Our study showcases the encapsulation of nitroreductase NfsB as functional dimers within encapsulins, which enhances protein activity and stability in diverse conditions. Mutations within the pore region are beneficial for activity of the encapsulated enzyme, potentially by increasing diffusion rates. Cryogenic electron microscopy reveals the overall architecture of the encapsulated dimeric NfsB within the nanoreactor environment and identifies multiple pore states in the shell. These findings highlight the potential of encapsulins as versatile tools for enhancing enzyme performance across various fields.",
author = "Mariia Zmyslia and Capper, {Michael J.} and Michael Grimmeisen and Kerstin Sartory and Benedikt Deuringer and Mohamed Abdelsalam and Kaiwei Shen and Manfred Jung and Wolfgang Sippl and Koch, {Hans Georg} and Laurine Kaul and Regine S{\"u}ss and Jesko K{\"o}hnke and Claudia Jessen-Trefzer",
note = "Publisher Copyright: {\textcopyright} 2024 RSC.",
year = "2024",
month = nov,
day = "4",
doi = "10.1039/d4cb00127c",
language = "English",
volume = "6",
pages = "21--35",
number = "1",

}

Download

TY - JOUR

T1 - A nanoengineered tandem nitroreductase

T2 - designing a robust prodrug-activating nanoreactor

AU - Zmyslia, Mariia

AU - Capper, Michael J.

AU - Grimmeisen, Michael

AU - Sartory, Kerstin

AU - Deuringer, Benedikt

AU - Abdelsalam, Mohamed

AU - Shen, Kaiwei

AU - Jung, Manfred

AU - Sippl, Wolfgang

AU - Koch, Hans Georg

AU - Kaul, Laurine

AU - Süss, Regine

AU - Köhnke, Jesko

AU - Jessen-Trefzer, Claudia

N1 - Publisher Copyright: © 2024 RSC.

PY - 2024/11/4

Y1 - 2024/11/4

N2 - Nitroreductases are important enzymes for a variety of applications, including cancer therapy and bioremediation. They often require encapsulation to improve stability and activity. We focus on genetically encoded encapsulation of nitroreductases within protein capsids, like encapsulins. Our study showcases the encapsulation of nitroreductase NfsB as functional dimers within encapsulins, which enhances protein activity and stability in diverse conditions. Mutations within the pore region are beneficial for activity of the encapsulated enzyme, potentially by increasing diffusion rates. Cryogenic electron microscopy reveals the overall architecture of the encapsulated dimeric NfsB within the nanoreactor environment and identifies multiple pore states in the shell. These findings highlight the potential of encapsulins as versatile tools for enhancing enzyme performance across various fields.

AB - Nitroreductases are important enzymes for a variety of applications, including cancer therapy and bioremediation. They often require encapsulation to improve stability and activity. We focus on genetically encoded encapsulation of nitroreductases within protein capsids, like encapsulins. Our study showcases the encapsulation of nitroreductase NfsB as functional dimers within encapsulins, which enhances protein activity and stability in diverse conditions. Mutations within the pore region are beneficial for activity of the encapsulated enzyme, potentially by increasing diffusion rates. Cryogenic electron microscopy reveals the overall architecture of the encapsulated dimeric NfsB within the nanoreactor environment and identifies multiple pore states in the shell. These findings highlight the potential of encapsulins as versatile tools for enhancing enzyme performance across various fields.

UR - http://www.scopus.com/inward/record.url?scp=85209732654&partnerID=8YFLogxK

U2 - 10.1039/d4cb00127c

DO - 10.1039/d4cb00127c

M3 - Article

AN - SCOPUS:85209732654

VL - 6

SP - 21

EP - 35

JO - RSC Chemical Biology

JF - RSC Chemical Biology

IS - 1

ER -