3D-ResNet-BiLSTM Model: A Deep Learning Model for County-Level Soybean Yield Prediction with Time-Series Sentinel-1, Sentinel-2 Imagery, and Daymet Data

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • University of Tehran
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer5551
Seitenumfang20
FachzeitschriftRemote sensing
Jahrgang15
Ausgabenummer23
PublikationsstatusVeröffentlicht - 29 Nov. 2023

Abstract

Ensuring food security in precision agriculture requires early prediction of soybean yield at various scales within the United States (U.S.), ranging from international to local levels. Accurate yield estimation is essential in preventing famine by providing insights into food availability during the growth season. Numerous deep learning (DL) algorithms have been developed to estimate soybean yield effectively using time-series remote sensing (RS) data to achieve this goal. However, the training data with short time spans can limit their ability to adapt to the dynamic and nuanced temporal changes in crop conditions. To address this challenge, we designed a 3D-ResNet-BiLSTM model to efficiently predict soybean yield at the county level across the U.S., even when using training data with shorter periods. We leveraged detailed Sentinel-2 imagery and Sentinel-1 SAR images to extract spectral bands, key vegetation indices (VIs), and VV and VH polarizations. Additionally, Daymet data was incorporated via Google Earth Engine (GEE) to enhance the model’s input features. To process these inputs effectively, a dedicated 3D-ResNet architecture was designed to extract high-level features. These enriched features were then fed into a BiLSTM layer, enabling accurate prediction of soybean yield. To evaluate the efficacy of our model, its performance was compared with that of well-known models, including the Linear Regression (LR), Random Forest (RF), and 1D/2D/3D-ResNet models, as well as a 2D-CNN-LSTM model. The data from a short period (2019 to 2020) were used to train all models, while their accuracy was assessed using data from the year 2021. The experimental results showed that the proposed 3D-Resnet-BiLSTM model had a superior performance compared to the other models, achieving remarkable metrics (R2 = 0.791, RMSE = 5.56 Bu Ac−1, MAE = 4.35 Bu Ac−1, MAPE = 9%, and RRMSE = 10.49%). Furthermore, the 3D-ResNet-BiLSTM model showed a 7% higher R2 than the ResNet and RF models and an enhancement of 27% and 17% against the LR and 2D-CNN-LSTM models, respectively. The results highlighted our model’s potential for accurate soybean yield predictions, supporting sustainable agriculture and food security.

ASJC Scopus Sachgebiete

Ziele für nachhaltige Entwicklung

Zitieren

3D-ResNet-BiLSTM Model: A Deep Learning Model for County-Level Soybean Yield Prediction with Time-Series Sentinel-1, Sentinel-2 Imagery, and Daymet Data. / Fathi, Mahdiyeh; Shah-Hosseini, Reza; Moghimi, Armin.
in: Remote sensing, Jahrgang 15, Nr. 23, 5551, 29.11.2023.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{5603c9ccc4b44f2fb16660f4cfbe26b5,
title = "3D-ResNet-BiLSTM Model: A Deep Learning Model for County-Level Soybean Yield Prediction with Time-Series Sentinel-1, Sentinel-2 Imagery, and Daymet Data",
abstract = "Ensuring food security in precision agriculture requires early prediction of soybean yield at various scales within the United States (U.S.), ranging from international to local levels. Accurate yield estimation is essential in preventing famine by providing insights into food availability during the growth season. Numerous deep learning (DL) algorithms have been developed to estimate soybean yield effectively using time-series remote sensing (RS) data to achieve this goal. However, the training data with short time spans can limit their ability to adapt to the dynamic and nuanced temporal changes in crop conditions. To address this challenge, we designed a 3D-ResNet-BiLSTM model to efficiently predict soybean yield at the county level across the U.S., even when using training data with shorter periods. We leveraged detailed Sentinel-2 imagery and Sentinel-1 SAR images to extract spectral bands, key vegetation indices (VIs), and VV and VH polarizations. Additionally, Daymet data was incorporated via Google Earth Engine (GEE) to enhance the model{\textquoteright}s input features. To process these inputs effectively, a dedicated 3D-ResNet architecture was designed to extract high-level features. These enriched features were then fed into a BiLSTM layer, enabling accurate prediction of soybean yield. To evaluate the efficacy of our model, its performance was compared with that of well-known models, including the Linear Regression (LR), Random Forest (RF), and 1D/2D/3D-ResNet models, as well as a 2D-CNN-LSTM model. The data from a short period (2019 to 2020) were used to train all models, while their accuracy was assessed using data from the year 2021. The experimental results showed that the proposed 3D-Resnet-BiLSTM model had a superior performance compared to the other models, achieving remarkable metrics (R2 = 0.791, RMSE = 5.56 Bu Ac−1, MAE = 4.35 Bu Ac−1, MAPE = 9%, and RRMSE = 10.49%). Furthermore, the 3D-ResNet-BiLSTM model showed a 7% higher R2 than the ResNet and RF models and an enhancement of 27% and 17% against the LR and 2D-CNN-LSTM models, respectively. The results highlighted our model{\textquoteright}s potential for accurate soybean yield predictions, supporting sustainable agriculture and food security.",
keywords = "BiLSTM, Conv3D, Daymet, Google Earth Engine (GEE), ResNet, Sentinel 1–2, soybean, yield prediction",
author = "Mahdiyeh Fathi and Reza Shah-Hosseini and Armin Moghimi",
year = "2023",
month = nov,
day = "29",
doi = "10.3390/rs15235551",
language = "English",
volume = "15",
journal = "Remote sensing",
issn = "2072-4292",
publisher = "Multidisciplinary Digital Publishing Institute",
number = "23",

}

Download

TY - JOUR

T1 - 3D-ResNet-BiLSTM Model

T2 - A Deep Learning Model for County-Level Soybean Yield Prediction with Time-Series Sentinel-1, Sentinel-2 Imagery, and Daymet Data

AU - Fathi, Mahdiyeh

AU - Shah-Hosseini, Reza

AU - Moghimi, Armin

PY - 2023/11/29

Y1 - 2023/11/29

N2 - Ensuring food security in precision agriculture requires early prediction of soybean yield at various scales within the United States (U.S.), ranging from international to local levels. Accurate yield estimation is essential in preventing famine by providing insights into food availability during the growth season. Numerous deep learning (DL) algorithms have been developed to estimate soybean yield effectively using time-series remote sensing (RS) data to achieve this goal. However, the training data with short time spans can limit their ability to adapt to the dynamic and nuanced temporal changes in crop conditions. To address this challenge, we designed a 3D-ResNet-BiLSTM model to efficiently predict soybean yield at the county level across the U.S., even when using training data with shorter periods. We leveraged detailed Sentinel-2 imagery and Sentinel-1 SAR images to extract spectral bands, key vegetation indices (VIs), and VV and VH polarizations. Additionally, Daymet data was incorporated via Google Earth Engine (GEE) to enhance the model’s input features. To process these inputs effectively, a dedicated 3D-ResNet architecture was designed to extract high-level features. These enriched features were then fed into a BiLSTM layer, enabling accurate prediction of soybean yield. To evaluate the efficacy of our model, its performance was compared with that of well-known models, including the Linear Regression (LR), Random Forest (RF), and 1D/2D/3D-ResNet models, as well as a 2D-CNN-LSTM model. The data from a short period (2019 to 2020) were used to train all models, while their accuracy was assessed using data from the year 2021. The experimental results showed that the proposed 3D-Resnet-BiLSTM model had a superior performance compared to the other models, achieving remarkable metrics (R2 = 0.791, RMSE = 5.56 Bu Ac−1, MAE = 4.35 Bu Ac−1, MAPE = 9%, and RRMSE = 10.49%). Furthermore, the 3D-ResNet-BiLSTM model showed a 7% higher R2 than the ResNet and RF models and an enhancement of 27% and 17% against the LR and 2D-CNN-LSTM models, respectively. The results highlighted our model’s potential for accurate soybean yield predictions, supporting sustainable agriculture and food security.

AB - Ensuring food security in precision agriculture requires early prediction of soybean yield at various scales within the United States (U.S.), ranging from international to local levels. Accurate yield estimation is essential in preventing famine by providing insights into food availability during the growth season. Numerous deep learning (DL) algorithms have been developed to estimate soybean yield effectively using time-series remote sensing (RS) data to achieve this goal. However, the training data with short time spans can limit their ability to adapt to the dynamic and nuanced temporal changes in crop conditions. To address this challenge, we designed a 3D-ResNet-BiLSTM model to efficiently predict soybean yield at the county level across the U.S., even when using training data with shorter periods. We leveraged detailed Sentinel-2 imagery and Sentinel-1 SAR images to extract spectral bands, key vegetation indices (VIs), and VV and VH polarizations. Additionally, Daymet data was incorporated via Google Earth Engine (GEE) to enhance the model’s input features. To process these inputs effectively, a dedicated 3D-ResNet architecture was designed to extract high-level features. These enriched features were then fed into a BiLSTM layer, enabling accurate prediction of soybean yield. To evaluate the efficacy of our model, its performance was compared with that of well-known models, including the Linear Regression (LR), Random Forest (RF), and 1D/2D/3D-ResNet models, as well as a 2D-CNN-LSTM model. The data from a short period (2019 to 2020) were used to train all models, while their accuracy was assessed using data from the year 2021. The experimental results showed that the proposed 3D-Resnet-BiLSTM model had a superior performance compared to the other models, achieving remarkable metrics (R2 = 0.791, RMSE = 5.56 Bu Ac−1, MAE = 4.35 Bu Ac−1, MAPE = 9%, and RRMSE = 10.49%). Furthermore, the 3D-ResNet-BiLSTM model showed a 7% higher R2 than the ResNet and RF models and an enhancement of 27% and 17% against the LR and 2D-CNN-LSTM models, respectively. The results highlighted our model’s potential for accurate soybean yield predictions, supporting sustainable agriculture and food security.

KW - BiLSTM

KW - Conv3D

KW - Daymet

KW - Google Earth Engine (GEE)

KW - ResNet

KW - Sentinel 1–2

KW - soybean

KW - yield prediction

UR - http://www.scopus.com/inward/record.url?scp=85179130727&partnerID=8YFLogxK

U2 - 10.3390/rs15235551

DO - 10.3390/rs15235551

M3 - Article

AN - SCOPUS:85179130727

VL - 15

JO - Remote sensing

JF - Remote sensing

SN - 2072-4292

IS - 23

M1 - 5551

ER -